LEADER 03855nam 22007815 450 001 9910698648803321 005 20251008140615.0 010 $a9783031263064$b(electronic bk.) 010 $z9783031263057 024 7 $a10.1007/978-3-031-26306-4 035 $a(MiAaPQ)EBC7236551 035 $a(Au-PeEL)EBL7236551 035 $a(DE-He213)978-3-031-26306-4 035 $a(OCoLC)1376375062 035 $a(PPN)269655719 035 $a(CKB)26435292300041 035 $a(EXLCZ)9926435292300041 100 $a20230413d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA Course on Hopf Algebras /$fby Rinat Kashaev 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (173 pages) 225 1 $aUniversitext,$x2191-6675 311 08$aPrint version: Kashaev, Rinat A Course on Hopf Algebras Cham : Springer International Publishing AG,c2023 9783031263057 320 $aIncludes bibliographical references and index. 330 $aThis textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang?Baxter equations. Starting with a reformulation of the definition of a group in terms of structural maps as motivation for the definition of a Hopf algebra, the book introduces the related algebraic notions: algebras, coalgebras, bialgebras, convolution algebras, modules, comodules. Next, Drinfel?d?s quantum double construction is achieved through the important notion of the restricted (or finite) dual of a Hopf algebra, which allows one to work purely algebraically, without completions. As a result, in applications to knot theory, to any Hopf algebra with invertible antipode one can associate a universal invariant of long knots. These constructions are elucidated in detailed analyses of a few examples of Hopf algebras. The presentation of the material is mostly based on multilinear algebra, with all definitions carefully formulated and proofs self-contained. The general theory is illustrated with concrete examples, and many technicalities are handled with the help of visual aids, namely string diagrams. As a result, most of this text is accessible with minimal prerequisites and can serve as the basis of introductory courses to beginning graduate students. 410 0$aUniversitext,$x2191-6675 606 $aAssociative rings 606 $aAssociative algebras 606 $aManifolds (Mathematics) 606 $aAlgebras, Linear 606 $aTopological groups 606 $aLie groups 606 $aMathematical physics 606 $aAlgebra, Homological 606 $aAssociative Rings and Algebras 606 $aManifolds and Cell Complexes 606 $aLinear Algebra 606 $aTopological Groups and Lie Groups 606 $aMathematical Physics 606 $aCategory Theory, Homological Algebra 615 0$aAssociative rings. 615 0$aAssociative algebras. 615 0$aManifolds (Mathematics) 615 0$aAlgebras, Linear. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aMathematical physics. 615 0$aAlgebra, Homological. 615 14$aAssociative Rings and Algebras. 615 24$aManifolds and Cell Complexes. 615 24$aLinear Algebra. 615 24$aTopological Groups and Lie Groups. 615 24$aMathematical Physics. 615 24$aCategory Theory, Homological Algebra. 676 $a512.55 700 $aKashaev$b Rinat$01352756 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910698648803321 996 $aA Course on Hopf Algebras$93200517 997 $aUNINA