LEADER 07176nam 2200505 450 001 9910523727403321 005 20220627150508.0 010 $a3-030-77677-8 035 $a(CKB)4100000012037886 035 $a(MiAaPQ)EBC6737866 035 $a(Au-PeEL)EBL6737866 035 $a(OCoLC)1272999984 035 $a(PPN)258057173 035 $a(EXLCZ)994100000012037886 100 $a20220627d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPrinciples of electrical neural interfacing $ea quantitative approach to cellular recording and stimulation /$fLiang Guo 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$dİ2021 215 $a1 online resource (177 pages) 311 $a3-030-77676-X 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgments -- Contents -- About the Author -- List of Abbreviations -- Chapter 1: Introduction -- 1.1 Neural Electrodes -- 1.2 Advantages and Limitations of Electrical Neural Interfacing -- 1.3 Problems of Focus in This Book -- 1.4 Featured Approach of Analysis -- References -- Part I: Properties and Models of Neurons and Electrodes -- Chapter 2: Equivalent Circuit Models of Neurons -- 2.1 The Classic Parallel-Conductance Model -- 2.2 Neuronal Model for DC Analysis -- 2.3 Neuronal Models for AC Analysis -- 2.3.1 Neuronal Model for Analyzing Subthreshold Transmembrane Voltage Changes -- 2.3.2 Neuronal Model for analyzing Suprathreshold Transmembrane Voltage Changes (APs) -- 2.3.3 Virtual Capacitive Current IC(s) -- 2.4 Monopole Current Source -- References -- Chapter 3: Recording Electrodes -- 3.1 Electrode-Electrolyte Interface -- 3.1.1 The Universal Electrode-Electrolyte Phase Boundary -- 3.1.2 Neural Recording Electrodes are Capacitive -- 3.2 Non-Redox Electrochemical Cell for Neural Recording -- 3.3 The Complete Neural Recording Circuit -- 3.4 Electrode Impedance -- 3.4.1 Principle of Electrode Impedance Measurement -- 3.4.2 Method for Electrode Impedance Measurement -- 3.4.3 How to Read the Impedance Plots -- 3.4.4 Methods to Reduce Electrode Impedance -- 3.5 Summary -- References -- Chapter 4: Stimulating Electrodes -- 4.1 Electrode-Electrolyte Interface -- 4.2 Electrolytic Cell for Neural Stimulation -- 4.3 The Complete Neural Stimulating Circuit -- 4.4 Charge Injection Capacity -- 4.4.1 Cyclic Voltammogram (CV), CSC, and CIC -- 4.4.2 Methods to Functionalize a Stimulating Electrode -- 4.5 Summary -- References -- Part II: Principles of Electrical Neural Recording -- Chapter 5: Intracellular Recording -- 5.1 DC Recording: The Resting Membrane Potential -- 5.2 AC Recording -- 5.2.1 How the AC Vm(s) Is Generated. 327 $a5.2.2 Intracellular Recording Using a Solid-State Microwire Electrode -- 5.2.3 Intracellular Recording Using Whole-Cell Patch-Clamp and Glass Micropipettes -- 5.3 Summary -- References -- Chapter 6: Extracellular Recording -- 6.1 Basic Relationships Between eFPs and Transmembrane Voltage Changes -- 6.2 Extracellular Recording Using a Planar Substrate Microelectrode -- 6.3 Optimizing the Recording Quality -- 6.3.1 Factors Affecting the SNR -- 6.4 Summary -- References -- Chapter 7: Extracellular Recording of Propagating Action Potentials -- 7.1 AP Propagation and Its Modeling -- 7.1.1 Forward Propagating Intracellular Current -- 7.1.2 Backward Propagating Intracellular Current -- 7.1.3 Overall Propagating Effect on eFP -- 7.2 The Recorded eFP -- 7.3 Summary -- References -- Chapter 8: Recording Using Field-Effect Transistors -- Summary -- References -- Chapter 9: Neural Recording Using Nanoprotrusion Electrodes -- 9.1 Extracellular Recording by Nanoprotrusion Electrodes -- 9.1.1 Subthreshold Depolarization Phase -- 9.1.2 AP Phase -- 9.2 Recording by Nanoprotrusion Electrodes After Membrane Poration -- 9.2.1 Subthreshold Depolarization Phase -- 9.2.2 AP Phase -- 9.3 Recording by Multiple Nanoprotrusion Electrodes on the Same Planar Microelectrode -- 9.3.1 Extracellular Recording -- 9.3.2 Recording After Membrane Poration -- 9.4 Conclusion -- 9.5 Summary -- References -- Chapter 10: Recording Using Tetrodes -- 10.1 Principle of Source Localization -- 10.1.1 Why the Neuronal Source Is Viewed as a Current Source? -- 10.1.2 Monopole Source Model -- 10.1.3 Analytical Solution to the Inverse Problem -- 10.1.4 Whether Deconvolution is Needed? -- 10.2 When a Real Analytical Solution Does Not Exist -- 10.3 Stepping Tetrode -- 10.4 Limitations of Tetrodes -- 10.5 Summary -- References. 327 $aChapter 11: Intracortical Functional Neural Mapping Using an Integrated 3D Ultra-Density MEA -- 11.1 Basic Concepts of a Single Electrode -- 11.1.1 Amplitude Resolution -- 11.1.2 Spatial Resolution -- 11.1.3 Receptive Field -- 11.1.4 Temporal Resolution -- 11.2 An Electrode Unit -- 11.3 Definition of Ultra-Density MEA -- 11.4 Neural Resolving Power of MEA -- 11.5 Principles of Functional Neural Mapping Using an Ultra-Density MEA -- 11.6 Discussions -- 11.6.1 Particular Issues of Ultra-Density MEA -- The Aliasing Effect -- The Peripheral Source Effect -- The Interposing Effect -- Concurrent AP Firing -- 11.6.2 Spatial Oversampling -- 11.6.3 Implications to BCIs -- 11.7 Summary -- References -- Part III: Principles of Electrical Neural Stimulation -- Chapter 12: Neuronal Stimulation -- 12.1 Intracellular Stimulation -- 12.2 Extracellular Stimulation: Basic Relationships Between eFP and Transmembrane Voltage -- 12.2.1 Intimate Stimulation -- 12.2.2 Distant Stimulation -- 12.2.3 Electrode Much Smaller Than the Neuron -- 12.3 Extracellular Stimulation Using a Planar Substrate Microelectrode -- 12.3.1 Electrode Area Equal to the Neuronal Junctional Area -- 12.3.2 Electrode Area Larger Than the Neuronal Junctional Area -- 12.3.3 Electrode Area Smaller Than the Neuronal Junctional Area -- 12.3.4 Electrode Area Much Smaller Than the Neuronal Junctional Area -- 12.3.5 Extracellular Stimulation Using a Planar Substrate Microelectrode After Electroporation -- 12.4 Optimizing Stimulation Efficacy -- 12.5 Summary -- References -- Chapter 13: Electrical Stimulation to Promote Neuronal Growth -- 13.1 Neuronal Model for Substrate Interaction -- 13.2 Weak DC Electric Field to Promote Neuronal Growth -- 13.2.1 DC Voltage Stimulation -- 13.2.2 DC Current Stimulation -- 13.3 DC Electric Field to Direct Axonal Growth -- 13.4 Summary -- References -- Part IV: Applications. 327 $aChapter 14: Applications -- 14.1 High-Performance BCIs -- 14.2 Drug Screening -- 14.3 Chronic Pain Management -- 14.4 Nerve Regeneration -- References -- Index. 606 $aNeurotechnology (Bioengineering) 606 $aNeural stimulation 606 $aElectrophysiology 615 0$aNeurotechnology (Bioengineering) 615 0$aNeural stimulation. 615 0$aElectrophysiology. 676 $a660.6 700 $aGuo$b Liang$01077214 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910523727403321 996 $aPrinciples of Electrical Neural Interfacing$92588577 997 $aUNINA LEADER 02900nam 2200469Ia 450 001 9910698360603321 005 20080618115043.0 035 $a(CKB)25432864500041 035 $a(OCoLC)183891478 035 $a(EXLCZ)9925432864500041 100 $a20071214d2007 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aEast Asian security$b[electronic resource] $etwo views 210 1$a[Carlisle, PA] :$c[Strategic Studies Institute, U.S. Army War College],$d[2007] 215 $avii, 56 pages $cdigital, PDF file 225 1 $aGlobal security challenges to U.S. interests 300 $aTitle from title screen (viewed on Dec. 13, 2007). 300 $a"November 2007." 300 $a"Originally presented at the Strategic Studies Institute's 2007 annual Strategy Conference" -- Foreword. 320 $aIncludes bibliographical references (pages 55-56). 327 $aThe security challenges in Northeast Asia: a Chinese view / Chu Shulong -- Security challenges to the United States in Northeast Asia: looking beyond the transformation of the Six-Party Talks / Gilbert Rozman. 330 $aA new framework for Northeast Asian security must cope with the legacy of six decades of frequent changes in the region's great power relations. In order to realize the goals of the Joint Agreement in the Six-Party Talks, multilateralism is becoming more important. U.S. leadership faces challenges from: the Sino-U.S. rivalry that is better managed because of cooperation over North Korea; the Russo-U.S. rivalry that has intensified, although there is potential to stabilize it in this region; Sino-Russian partnership, which has drawn closer in response to the nuclear crisis but could be tested by progress that would reveal conflicting national interests; North Korean belligerence, which is unlikely to end even if the nuclear crisis is brought under control; South Korean balancing, which would remain even under a conservative president; and Sino-Japanese rivalry, which is somewhat under control in 2007 but remains the main barrier to regionalism. A U.S. regional strategy is needed that addresses all of these challenges in the context of the Six-Party Talks. 606 $aSecurity, International$zEast Asia 606 $aRegionalism$zEast Asia 607 $aEast Asia$xStrategic aspects 607 $aUnited States$xForeign relations$zEast Asia 607 $aEast Asia$xForeign relations$zUnited States 615 0$aSecurity, International 615 0$aRegionalism 701 $aChu$b Shulong$01407707 701 $aRozman$b Gilbert$0135036 712 02$aArmy War College (U.S.).$bStrategic Studies Institute. 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910698360603321 996 $aEast Asian security$93489874 997 $aUNINA