LEADER 01670nam 2200421 a 450 001 9910696557003321 005 20080424092333.0 035 $a(CKB)5470000002379281 035 $a(OCoLC)226211410 035 $a(EXLCZ)995470000002379281 100 $a20080424d2008 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTraffic safety$b[electronic resource] $egrants generally address key safety issues, despite state eligibility and management difficulties : report to the Committee on Transportation and Infrastructure, House of Representatives 210 1$a[Washington, D.C.] :$cU.S. Govt. Accountability Office,$d[2008] 215 $aiii, 55 pages $cdigital, PDF file 300 $aTitle from title screen (viewed on Apr. 17, 2008). 300 $a"March 2008." 300 $aPaper version available from: U.S. Govt. Accountability Office, 441 G St., NW, Rm. LM, Washington, D.C. 20548. 300 $a"GAO-08-398." 320 $aIncludes bibliographical references. 517 $aTraffic safety 606 $aTraffic safety$zUnited States$xStates$xFinance 606 $aTraffic fatalities$zUnited States$xStates$xPrevention 606 $aGrants-in-aid$zUnited States 615 0$aTraffic safety$xStates$xFinance. 615 0$aTraffic fatalities$xStates$xPrevention. 615 0$aGrants-in-aid 712 02$aUnited States.$bCongress.$bHouse.$bCommittee on Transportation and Infrastructure. 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910696557003321 996 $aTraffic safety$91930480 997 $aUNINA LEADER 03891nam 22006615 450 001 9910349343303321 005 20200704053303.0 010 $a3-030-18152-9 024 7 $a10.1007/978-3-030-18152-9 035 $a(CKB)4100000009040610 035 $a(MiAaPQ)EBC5851625 035 $a(DE-He213)978-3-030-18152-9 035 $a(PPN)242823955 035 $a(EXLCZ)994100000009040610 100 $a20190814d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPseudo-Riemannian Homogeneous Structures /$fby Giovanni Calvaruso, Marco Castrillón López 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (238 pages) 225 1 $aDevelopments in Mathematics,$x1389-2177 ;$v59 311 $a3-030-18151-0 320 $aIncludes bibliographical references and index. 327 $a1 G-structures, holonomy and homogeneous spaces -- 2 Ambrose-Singer connections and homogeneous spaces -- 3 Locally homogeneous pseudo-Riemannian manifolds -- 4 Classification of homogeneous structures -- 5 Homogeneous structures of linear type -- 6 Reduction of homogeneous structures -- 7 Where all this fails: non-reductive homogeneous pseudo-Riemannian manifolds -- Subject Index. 330 $aThis book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics. 410 0$aDevelopments in Mathematics,$x1389-2177 ;$v59 606 $aGeometry, Differential 606 $aMathematical physics 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aTopological groups 606 $aLie groups 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 615 0$aGeometry, Differential. 615 0$aMathematical physics. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aTopological groups. 615 0$aLie groups. 615 14$aDifferential Geometry. 615 24$aMathematical Applications in the Physical Sciences. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aTopological Groups, Lie Groups. 676 $a516.373 676 $a516.362 700 $aCalvaruso$b Giovanni$4aut$4http://id.loc.gov/vocabulary/relators/aut$0535082 702 $aCastrillón López$b Marco$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910349343303321 996 $aPseudo-Riemannian Homogeneous Structures$92534283 997 $aUNINA