LEADER 03077nam 22005775 450 001 996418274103316 005 20200903162032.0 010 $a3-030-51335-1 024 7 $a10.1007/978-3-030-51335-1 035 $a(CKB)4100000011413850 035 $a(DE-He213)978-3-030-51335-1 035 $a(MiAaPQ)EBC6336359 035 $a(PPN)250220482 035 $a(EXLCZ)994100000011413850 100 $a20200903d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHomotopy Theory with Bornological Coarse Spaces$b[electronic resource] /$fby Ulrich Bunke, Alexander Engel 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (VII, 245 p. 71 illus., 3 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2269 311 $a3-030-51334-3 320 $aIncludes bibliographical references and index. 330 $aProviding a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories. The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2269 606 $aK-theory 606 $aGeometry 606 $aAlgebraic topology 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 615 0$aK-theory. 615 0$aGeometry. 615 0$aAlgebraic topology. 615 14$aK-Theory. 615 24$aGeometry. 615 24$aAlgebraic Topology. 676 $a514.24 700 $aBunke$b Ulrich$4aut$4http://id.loc.gov/vocabulary/relators/aut$0791284 702 $aEngel$b Alexander$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418274103316 996 $aHomotopy Theory with Bornological Coarse Spaces$92391154 997 $aUNISA LEADER 01409nam 2200373Ka 450 001 9910696529203321 005 20080508090111.0 035 $a(CKB)5470000002379562 035 $a(OCoLC)227205414 035 $a(EXLCZ)995470000002379562 100 $a20080508d1999 ua 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEcology and development of Douglas-fir seedlings and associated plant species in a coast range plantation$b[electronic resource] /$fPhilip M. McDonald, Gary O. Fiddler 210 1$a[Albany, Calif.] :$cU.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station,$d[1999] 215 $aii, 18 pages $cdigital, PDF file 225 1 $aResearch paper PSW-RP ;$v243 300 $aTitle from title screen (viewed May 5, 2008) 300 $a"December 1999"--P. [2] of cover. 606 $aDouglas fir$zCalifornia 606 $aPlant communities$zCalifornia 615 0$aDouglas fir 615 0$aPlant communities 700 $aMcDonald$b Philip Mark$01387104 701 $aFiddler$b Gary O$01387105 712 02$aPacific Southwest Research Station. 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910696529203321 996 $aEcology and development of Douglas-fir seedlings and associated plant species in a coast range plantation$93540561 997 $aUNINA