LEADER 02189nam 2200589 450 001 9910478914003321 005 20170822123910.0 010 $a1-4704-2030-9 035 $a(CKB)3710000000393419 035 $a(EBL)3114321 035 $a(SSID)ssj0001456719 035 $a(PQKBManifestationID)11785251 035 $a(PQKBTitleCode)TC0001456719 035 $a(PQKBWorkID)11434717 035 $a(PQKB)10087629 035 $a(MiAaPQ)EBC3114321 035 $a(PPN)185868592 035 $a(EXLCZ)993710000000393419 100 $a20150416h20142014 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres /$fJ.-M. Delort 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2014. 210 4$d©2014 215 $a1 online resource (80 p.) 225 1 $aMemoirs of the American Mathematical Society,$x1947-6221 ;$vVolume 234, Number 1103 (third of 5 numbers) 300 $aDescription based upon print version of record. 311 $a1-4704-0983-6 320 $aIncludes bibliographical references. 327 $a""Cover""; ""Title page""; ""Chapter 0. Introduction""; ""Chapter 1. Statement of the main theorem""; ""Chapter 2. Symbolic calculus""; ""Chapter 3. Quasi-linear Birkhoff normal forms method""; ""Chapter 4. Proof of the main theorem""; ""A. Appendix""; ""Bibliography""; ""Back Cover"" 410 0$aMemoirs of the American Mathematical Society ;$vVolume 234, Number 1103 (third of 5 numbers) 606 $aHamiltonian systems 606 $aKlein-Gordon equation 606 $aWave equation 606 $aSphere 608 $aElectronic books. 615 0$aHamiltonian systems. 615 0$aKlein-Gordon equation. 615 0$aWave equation. 615 0$aSphere. 676 $a516/.156 700 $aDelort$b Jean-Marc$f1961-$059558 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910478914003321 996 $aQuasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres$92035973 997 $aUNINA LEADER 01683oas 2200529 a 450 001 9910695246403321 005 20140604174943.0 035 $a(CKB)5470000002368277 035 $a(OCoLC)53227034$z(OCoLC)71364668 035 $a(EXLCZ)995470000002368277 100 $a20031017b20002012 sa 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBackground note, Bosnia and Herzegovina$b[electronic resource] /$fBureau of European and Eurasian Affairs 210 $a[Washington, D.C.] $cU.S. Dept. of State, Bureau of European and Eurasian Affairs$d-2012 215 $a1 online resource 517 1 $aBosnia and Herzegovina 606 $aInternational relations$2fast 606 $aPolitical science$2fast 606 $aTravel$2fast 607 $aBosnia and Herzegovina$xDescription and travel$vPeriodicals 607 $aBosnia and Herzegovina$xForeign relations$vPeriodicals 607 $aBosnia and Herzegovina$xPolitics and government$vPeriodicals 607 $aBosnia and Herzegovina$2fast 608 $aPeriodicals.$2fast 615 7$aInternational relations. 615 7$aPolitical science. 615 7$aTravel. 712 02$aUnited States.$bDepartment of State.$bBureau of European and Eurasian Affairs. 801 0$bGPO 801 1$bGPO 801 2$bOCLCQ 801 2$bGPO 801 2$bDOS 801 2$bOCLCQ 801 2$bOCLCA 801 2$bOCLCQ 801 2$bOCLCA 801 2$bOCLCF 801 2$bGPO 906 $aJOURNAL 912 $a9910695246403321 996 $aBackground note, Bosnia and Herzegovina$93216352 997 $aUNINA LEADER 03455nam 22005655 450 001 9910370250703321 005 20251113181906.0 010 $a3-030-31163-5 024 7 $a10.1007/978-3-030-31163-6 035 $a(CKB)4940000000158789 035 $a(DE-He213)978-3-030-31163-6 035 $a(MiAaPQ)EBC6005501 035 $a(PPN)242845274 035 $a(MiAaPQ)EBC29079661 035 $a(EXLCZ)994940000000158789 100 $a20200103d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComplex Analytic Cycles I $eBasic Results on Complex Geometry and Foundations for the Study of Cycles /$fby Daniel Barlet, Jón Magnússon 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XI, 533 p. 60 illus.) 225 1 $aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,$x2196-9701 ;$v356 311 08$a3-030-31162-7 320 $aIncludes bibliographical references and index. 327 $aPreliminary material -- Multigraphs and Reduced Complex Spaces -- Analysis and Geometry on a Reduced Complex Space -- Families of Cycles in Complex Geometry. 330 $aThe book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction ofthe cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society. 410 0$aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,$x2196-9701 ;$v356 606 $aFunctions of complex variables 606 $aProjective geometry 606 $aSeveral Complex Variables and Analytic Spaces 606 $aProjective Geometry 615 0$aFunctions of complex variables. 615 0$aProjective geometry. 615 14$aSeveral Complex Variables and Analytic Spaces. 615 24$aProjective Geometry. 676 $a516.35 676 $a516.35 700 $aBarlet$b Daniel$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781286 702 $aMagnússon$b Jón$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910370250703321 996 $aComplex Analytic Cycles I$92517210 997 $aUNINA