LEADER 00912nam0-22003011i-450- 001 990003963290403321 005 20061013095032.0 010 $a0-19-877320-X 035 $a000396329 035 $aFED01000396329 035 $a(Aleph)000396329FED01 035 $a000396329 100 $a20030910d1993----km-y0itay50------ba 101 0 $aeng 102 $aUS 200 1 $aModelling nonlinear economic relationships$fClive W.J. Granger and Timo Terasvirta 210 $aOxford$cOxford University Press$d1993 215 $a187 p.$d23 cm 225 1 $aAdvanced texts in econometrics 700 1$aGranger,$bClive William John$f<1934-2009>$0293360 701 1$aTeräsvirta,$bTimo$0411206 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003963290403321 952 $aC2-C5.38$b5870$fDECTS 959 $aDECTS 996 $aModelling nonlinear economic relationships$9512774 997 $aUNINA LEADER 01388nam 2200337Ka 450 001 9910695244303321 005 20060824161452.0 035 $a(CKB)5470000002368298 035 $a(OCoLC)71126290 035 $a(EXLCZ)995470000002368298 100 $a20060824d2006 ua 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFactors associated with sources, transport, and fate of volatile organic compounds in aquifers of the United States and implications for ground-water management and assessments$b[electronic resource] 210 1$a[Washington, D.C.] :$cUnited States Dept. of Interior, U.S. Geological Survey,$d[2006] 215 $a48 pages $cdigital, PDF file 225 1 $aScientific Investigations Report ;$v2005-5269. 300 $aTitle from title screen (viewed on Aug. 24, 2006). 300 $a"2006." 320 $aIncludes bibliographical references. 606 $aGroundwater$xPurification$zUnited States 615 0$aGroundwater$xPurification 712 02$aGeological Survey (U.S.) 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910695244303321 996 $aFactors associated with sources, transport, and fate of volatile organic compounds in aquifers of the United States and implications for ground-water management and assessments$93216331 997 $aUNINA LEADER 09062nam 2200493 450 001 9910544846703321 005 20220929192938.0 010 $a3-030-86482-0 035 $a(MiAaPQ)EBC6887151 035 $a(Au-PeEL)EBL6887151 035 $a(CKB)21167320800041 035 $a(PPN)260830968 035 $a(EXLCZ)9921167320800041 100 $a20220929d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectrophysiology $ebasics, modern approaches, and applications /$fJu?rgen Rettinger, Silvia Schwarz Linder, Wolfgang Schwarz 205 $aSecond edition. 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (225 pages) 311 08$aPrint version: Rettinger, Jürgen Electrophysiology Cham : Springer International Publishing AG,c2022 9783030864811 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgements -- About This Book -- Important Physical Units -- Contents -- About the Authors -- Abbreviations -- Chapter 1: Introduction -- 1.1 Basic Background Knowledge -- 1.2 History of Electrophysiology -- Take-Home Messages -- References -- Chapter 2: Basics Theory -- 2.1 Electrical Characteristics of Biological Membranes -- 2.2 Ion Distribution at Biological Membranes -- 2.3 Donnan Distribution and Nernst Equation -- 2.3.1 Donnan Distribution -- 2.3.2 Nernst Equation -- 2.4 Goldman-Hodgkin-Katz Equation -- Take-Home Messages -- References -- Chapter 3: Basics: Methods -- 3.1 Recording Electrical Signals from Body Surface -- 3.2 The Example (ECG) -- 3.2.1 Electrophysiological Basics -- 3.2.2 Activation of the Heart Muscle -- 3.3 Recording Electrical Signals from Tissue -- 3.3.1 Intracardiac Electrograms -- 3.3.2 The Ussing Chamber -- 3.3.3 Recording from the Brain -- 3.3.4 Recording Extracellular Field Potentials with Multielectrode Arrays -- 3.4 Recording Electrical Signals from Single Cells -- 3.4.1 The Ag/AgCl Electrode -- 3.4.2 The Microelectrode -- 3.4.3 Ion-Selective Microelectrodes -- 3.4.3.1 Construction of Ion-Selective Microelectrodes -- 3.4.3.2 Theory of Ion-Selective Microelectrodes -- 3.4.4 The Carbon-Fibre Technique -- 3.4.4.1 Construction of Carbon-Fibre Microelectrodes -- 3.4.4.2 Theory of Carbon-Fibre Microelectrodes -- 3.4.4.3 Amperometric and Cyclic Voltammetric Measurements -- 3.4.5 Basics of Voltage Clamp -- 3.4.5.1 The Ideal Voltage Clamp -- 3.4.5.2 The Real Voltage Clamp -- 3.4.5.3 The Voltage Clamp with Two Electrodes -- 3.4.5.4 One-Electrode Voltage Clamp Used for the Patch-Clamp Technique -- 3.4.5.5 Performing Voltage Clamp -- 3.4.6 Noise in Electrophysiological Measurements -- 3.4.6.1 Thermal Noise -- 3.4.6.2 Shot Noise -- 3.4.6.3 Dielectric Noise -- 3.4.6.4 Digitisation Noise. 327 $a3.4.6.5 The Sampling Theorem and Aliasing Noise -- 3.4.6.6 Excess Noise -- Take-Home Messages -- References -- Chapter 4: Application of the Voltage-Clamp Technique -- 4.1 Different Versions of the Voltage-Clamp Technique -- 4.1.1 The Classic Squid Giant Axon -- 4.1.2 The Vaseline- or Sucrose-Gap Voltage Clamp -- 4.1.3 The Two-Microelectrode Voltage Clamp -- 4.1.4 The One-Electrode Voltage Clamp -- 4.1.5 The Open-Oocyte Voltage Clamp -- 4.2 Analysing Current Fluctuations -- 4.3 Analysing Transient Charge Movements (Gating Currents) -- 4.4 The Patch-Clamp Technique -- 4.4.1 Different Versions of Patch Clamp (Patch Conformations) -- 4.4.2 Advantages of the Different Patch Conformations -- 4.4.3 The Single-Channel Current and Conductance -- 4.4.4 The Sniffer-Patch Method -- 4.5 Automated Electrophysiology -- 4.5.1 Automated Patch Clamp -- Take-Home Messages -- References -- Chapter 5: Ion-Selective Channels -- 5.1 General Characteristics of Ion Channels -- 5.1.1 Selectivity of Ion Channels -- 5.1.2 Discrete Movement of Ions through Pores -- 5.2 Specific Ion Channels -- 5.2.1 The Na+ Channel (A Single-Ion Pore) -- 5.2.2 The K+ Channel (A Multi-Ion Pore) -- 5.2.3 The Ca2+ Channel (A Multi-Ion Pore) -- 5.2.4 Anion-Selective Channels -- Take-Home Messages -- References -- Chapter 6: Theory of Excitability -- 6.1 The Hodgkin-Huxley Description of Excitation -- 6.1.1 Experimental Basics -- 6.1.2 The Hodgkin-Huxley (HH) Description of Excitability -- 6.1.2.1 The Hypothetical Channel -- 6.1.2.2 The K+ Channel -- 6.1.2.3 The Na+ Channel -- 6.1.2.4 The HH Description -- 6.1.3 The Action Potential -- 6.1.3.1 Phenomenological Description -- 6.1.3.2 Calculation of Propagated Action Potential. -- 6.2 Continuous and Saltatory Spread of Action Potentials -- 6.2.1 The Electrotonic Potential -- 6.2.2 The Continuous Spread of an Action Potential. 327 $a6.2.3 The Saltatory Spread of an Action Potential -- 6.3 Generation and Transmission of Action Potentials -- 6.3.1 Generation -- 6.3.2 Transmission -- 6.4 Summary of the Different Types of Potentials -- 6.4.1 Surface Potential -- 6.5 Action Potential in Non-nerve Cells -- 6.5.1 Skeletal Muscle -- 6.5.2 Smooth Muscle -- 6.5.3 Heart Muscle -- 6.5.4 Plant Cells -- Take-Home Messages -- References -- Chapter 7: Carrier-Mediated Transport -- 7.1 General Characteristics of Carriers -- 7.1.1 Distinction Between Pores and Carriers -- 7.1.2 The Oocytes of Xenopus: A Model System -- 7.1.3 The Anion Exchanger -- 7.1.4 The Sodium Pump -- 7.1.4.1 Steady-State Pump Current -- 7.1.4.2 Transient Pump-Generated Currents -- 7.1.5 The Neurotransmitter Transporter GAT1 -- 7.2 Carriers Are Like Channels with Alternating Gates -- Take-Home Messages -- References -- Chapter 8: Examples of Application of the Voltage-Clamp Technique -- 8.1 Structure-Function Relationships of Carrier Proteins -- 8.1.1 The Na+,K+-ATPase -- 8.1.2 The Na+-Dependent GABA Transporter (GAT1) -- 8.2 Structure-Function Relationships of Ion Channels -- 8.2.1 Families of Various Ion Channels -- 8.2.1.1 The Voltage-Gated Ion Channel (VIC) Superfamily -- 8.2.1.2 The Ligand-Gated Ion Channel (LIC) Family -- 8.2.1.3 The Chloride Channel (ClC) Family -- 8.2.1.4 The Gap Junction-Forming (Connexin) Family -- 8.2.1.5 The Epithelial Na+ Channel (ENaC) Family -- 8.2.1.6 Mechanosensitive Ion Channels -- 8.2.2 ATP-Gated Cation Channel (ACC) Family -- 8.2.2.1 Structure and Classification of P2X Receptors -- 8.2.3 Experimental Results -- 8.2.3.1 The P2X1 Receptor -- 8.2.3.2 The P2X2 Receptor -- 8.2.3.3 Effect of Glycosylation on P2X1 Receptor Function -- 8.3 Viral Ion Channels -- 8.3.1 The 3a Protein of SARS Coronavirus -- 8.3.1.1 Inhibition of 3a-Mediated Current by the Anthrachinon Emodin. 327 $a8.3.1.2 Inhibition of 3a-Mediated Current by the Kaempferol Glycoside Juglanin -- 8.3.2 Channel Proteins of SARS Coronavirus-2 -- 8.3.3 The Viral Protein Unit (Vpu) of HIV-1 -- 8.3.4 The M2 (Matrix Protein 2) of Influenza a Virus -- 8.3.4.1 Inhibition of M2-Mediated Current by Kaempferol Triglycoside -- 8.4 Electrophysiology as a Tool in Chinese Medicine Research -- 8.4.1 Mechanisms in Acupuncture Points -- 8.4.1.1 Mast-Cell Degranulation -- 8.4.1.2 Mast-Cell Degranulation Is Initiated by Ion-Channel Activation -- 8.4.2 Mechanisms in Effected Sites -- 8.4.2.1 Co-Expression of Neurotransmitter Transporters and ?-Opioid Receptor -- 8.5 Electrophysiology as a Tool in Pharmacology -- 8.5.1 The Na+,Ca2+ Exchanger -- 8.5.2 Neurotransmitter Transporters -- 8.5.3 Ion Channels -- Take-Home Messages -- References -- Chapter 9: Appendix -- 9.1 Influence of External Electrical and Magnetic Fields on Physiological Function -- 9.1.1 Magnetostatic Fields -- 9.1.2 Electrostatic Fields -- 9.1.3 Electromagnetic Fields -- 9.1.3.1 Low-Frequency Electric Fields (50 Hz) -- 9.1.3.2 High Frequency Electric Fields (kHz - GHz) -- 9.1.3.3 Conclusion -- 9.2 A Laboratory Course: Two-Electrode Voltage Clamp (TEVC) -- 9.2.1 Motivation -- 9.2.2 Background -- 9.2.2.1 Electrical Characteristics of Biological Membranes -- The Membrane Potential -- The Membrane as an Electrical Unit -- Theoretical Background of Voltage Clamp -- The Principle of Voltage Clamp (See Sect. 3.4.5) -- Two-Electrode Voltage Clamp -- 9.2.3 Questions to Be Answered for the Course -- 9.2.4 Set-up and Basic Instructions -- 9.2.4.1 Experimental Set-up (See Fig. 9.6) -- 9.2.4.2 Preparation of Microelectrodes -- 9.2.4.3 Instructions for the Use of CellWorks Program for the Turbo TEC -- 9.2.4.4 Solutions -- 9.2.5 Experiments and Data Analysis -- 9.2.5.1 IV Characteristics -- Procedure -- Tasks. 327 $a9.2.5.2 Hypothesis Testing - the Paired-Sample T-Test -- 9.2.5.3 Determination of the Membrane Capacitance -- Procedure -- Tasks -- References -- Index. 606 $aElectrophysiology 615 0$aElectrophysiology. 676 $a612.813 700 $aRettinger$b Ju?rgen$01062905 702 $aSchwarz Linder$b Silvia 702 $aSchwarz$b W$g(Wolfgang), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910544846703321 996 $aElectrophysiology$92529018 997 $aUNINA