LEADER 05517nam 2200685Ia 450 001 9910141800503321 005 20230803030941.0 010 $a3-527-65367-8 010 $a3-527-65365-1 010 $a3-527-65368-6 035 $a(CKB)2670000000403540 035 $a(EBL)1319497 035 $a(OCoLC)854521193 035 $a(SSID)ssj0001102857 035 $a(PQKBManifestationID)11629291 035 $a(PQKBTitleCode)TC0001102857 035 $a(PQKBWorkID)11103120 035 $a(PQKB)11410922 035 $a(MiAaPQ)EBC1319497 035 $a(Au-PeEL)EBL1319497 035 $a(CaPaEBR)ebr10738050 035 $a(CaONFJC)MIL506220 035 $a(EXLCZ)992670000000403540 100 $a20130802d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMolecular excitation dynamics and relaxation$b[electronic resource] $equantum theory and spectroscopy /$fLeonas Valkunas, Darius Abramavicius, Tomas Mancal 210 $aWeiheim, Germany $cWiley-VCH$dc2013 215 $a1 online resource (465 p.) 225 0 $aWiley trading series 300 $aDescription based upon print version of record. 311 $a3-527-41008-2 320 $aIncludes bibliographical references and index. 327 $aMolecular Excitation Dynamics and Relaxation; Contents; Preface; Part One Dynamics and Relaxation; 1 Introduction; 2 Overview of Classical Physics; 2.1 Classical Mechanics; 2.1.1 Concepts of Theoretical Mechanics: Action, Lagrangian, and Lagrange Equations; 2.1.2 Hamilton Equations; 2.1.3 Classical Harmonic Oscillator; 2.2 Classical Electrodynamics; 2.2.1 Electromagnetic Potentials and the Coulomb Gauge; 2.2.2 Transverse and Longitudinal Fields; 2.3 Radiation in Free Space; 2.3.1 Lagrangian and Hamiltonian of the Free Radiation; 2.3.2 Modes of the Electromagnetic Field 327 $a2.4 Light-Matter Interaction2.4.1 Interaction Lagrangian and Correct Canonical Momentum; 2.4.2 Hamiltonian of the Interacting Particle-Field System; 2.4.3 Dipole Approximation; 3 Stochastic Dynamics; 3.1 Probability and Random Processes; 3.2 Markov Processes; 3.3 Master Equation for Stochastic Processes; 3.3.1 Two-Level System; 3.4 Fokker-Planck Equation and Diffusion Processes; 3.5 Deterministic Processes; 3.6 Diffusive Flow on a Parabolic Potential (a Harmonic Oscillator); 3.7 Partially Deterministic Process and the Monte Carlo Simulation of a Stochastic Process 327 $a3.8 Langevin Equation and Its Relation to the Fokker-Planck Equation4 Quantum Mechanics; 4.1 Quantum versus Classical; 4.2 The Schro?dinger Equation; 4.3 Bra-ket Notation; 4.4 Representations; 4.4.1 Schro?dinger Representation; 4.4.2 Heisenberg Representation; 4.4.3 Interaction Representation; 4.5 Density Matrix; 4.5.1 Definition; 4.5.2 Pure versus Mixed States; 4.5.3 Dynamics in the Liouville Space; 4.6 Model Systems; 4.6.1 Harmonic Oscillator; 4.6.2 Quantum Well; 4.6.3 Tunneling; 4.6.4 Two-Level System; 4.6.5 Periodic Structures and the Kronig-Penney Model; 4.7 Perturbation Theory 327 $a4.7.1 Time-Independent Perturbation Theory4.7.2 Time-Dependent Perturbation Theory; 4.8 Einstein Coefficients; 4.9 Second Quantization; 4.9.1 Bosons and Fermions; 4.9.2 Photons; 4.9.3 Coherent States; 5 Quantum States of Molecules and Aggregates; 5.1 Potential Energy Surfaces, Adiabatic Approximation; 5.2 Interaction between Molecules; 5.3 Excitonically Coupled Dimer; 5.4 Frenkel Excitons of Molecular Aggregates; 5.5 Wannier-Mott Excitons; 5.6 Charge-Transfer Excitons; 5.7 Vibronic Interaction and Exciton Self-Trapping; 5.8 Trapped Excitons; 6 The Concept of Decoherence 327 $a6.1 Determinism in Quantum Evolution6.2 Entanglement; 6.3 Creating Entanglement by Interaction; 6.4 Decoherence; 6.5 Preferred States; 6.6 Decoherence in Quantum Random Walk; 6.7 Quantum Mechanical Measurement; 6.8 Born Rule; 6.9 Everett or Relative State Interpretation of Quantum Mechanics; 6.10 Consequences of Decoherence for Transfer and Relaxation Phenomena; 7 Statistical Physics; 7.1 Concepts of Classical Thermodynamics; 7.2 Microstates, Statistics, and Entropy; 7.3 Ensembles; 7.3.1 Microcanonical Ensemble; 7.3.2 Canonical Ensemble; 7.3.3 Grand Canonical Ensemble 327 $a7.4 Canonical Ensemble of Classical Harmonic Oscillators 330 $aThis work brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire fi eld rather than just single aspects.Written by experienced authors and recognized authorities in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all fi nd this a must-have for their research. Also suitable as supplementary reading in graduate level course 606 $aCondensed matter$xSpectra 606 $aMolecular spectroscopy 606 $aQuantum theory 615 0$aCondensed matter$xSpectra. 615 0$aMolecular spectroscopy. 615 0$aQuantum theory. 676 $a543.54 700 $aValku?nas$b Leonas$0907948 701 $aAbramavicius$b Darius$0907949 701 $aMancal$b Tomas$0907950 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141800503321 996 $aMolecular excitation dynamics and relaxation$92030829 997 $aUNINA LEADER 00900nam 2200265z- 450 001 9910689683003321 005 20240906104926.0 035 $a(CKB)5470000002332302 035 $a(EXLCZ)995470000002332302 100 $a20230503cuuuuuuuu -u- - 101 0 $aeng 200 10$aWelfare reform $epast successes, new challenges : hearing before the Committee on Finance, United States Senate, One Hundred Eighth Congress, first session, (Des Moines, IA), February 20, 2003 210 $aWashington 311 $a0-16-070401-4 517 $aWelfare reform 606 $aPublic welfare$zIowa 606 $aPublic welfare$zUnited States 606 $aFederal aid to public welfare$zUnited States 615 0$aPublic welfare 615 0$aPublic welfare 615 0$aFederal aid to public welfare 906 $aBOOK 912 $a9910689683003321 996 $aWelfare reform$93096253 997 $aUNINA