LEADER 01381nam 2200337 n 450 001 9910688486803321 005 20230626191317.0 035 $a(CKB)5400000000045373 035 $a(NjHacI)995400000000045373 035 $a(EXLCZ)995400000000045373 100 $a20230626d2006 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBijective point maps, point-stationarity and characterization of Palm measures /$fMatthias Heveling 210 1$a[Place of publication not identified] :$cKIT Scientific Publishing,$d2006. 215 $a1 online resource (iv, 82 pages) 311 $a1000004284 330 $aIn the theory of stationary spatial point processes, Palm distributions are used to describe the point process seen from one of its points. Such an intrinsic frame of reference is not only interesting for theoretical considerations, but also useful in related fields such as queuing theory and stochastic geometry. 606 $aStochastic geometry 615 0$aStochastic geometry. 676 $a519.2 700 $aHeveling$b Matthias$01367671 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910688486803321 996 $aBijective point maps, point-stationarity and characterization of Palm measures$93391329 997 $aUNINA