LEADER 03747nam 2200421z- 450 001 9910688232803321 005 20231214132852.0 035 $a(CKB)3800000000216278 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/41778 035 $a(EXLCZ)993800000000216278 100 $a20202102d2016 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBad Bugs in the XXIst Century: Resistance Mediated by Multi-Drug Efflux Pumps in Gram-Negative Bacteria 210 $cFrontiers Media SA$d2016 215 $a1 electronic resource (193 p.) 225 1 $aFrontiers Research Topics 311 $a2-88919-931-2 330 $aThe discovery of antibiotics represented a key milestone in the history of medicine. However, with the rise of these life-saving drugs came the awareness that bacteria deploy defence mechanisms to resist these antibiotics, and they are good at it. Today, we appear at a crossroads between discovery of new potent drugs and omni-resistant superbugs. Moreover, the misuse of antibiotics in different industries has increased the rate of resistance development by providing permanent selective pressure and, subsequently, enrichment of multidrug resistant pathogens. As a result, antimicrobial resistance has now become an urgent threat to public health worldwide (http://www.who.int/drugresistance/documents/surveillancereport/en/). The development of multidrug resistance (MDR) in an increasing number of pathogens, including Pseudomonas, Acinetobacter, Klebsiella, Salmonella, Burkholderia, and other Gram-negative bacteria is a most severe issue. Membrane efflux pump complexes of the Resistance-Nodulation-cell Division (RND) superfamily play a key role in the development of MDR in these bacteria. RND pumps, together with other transporters, contribute to intrinsic and acquired resistance to most, if not all, of the antimicrobial compounds available in our drug arsenal. Given the enormous drug polyspecificity of MDR efflux pumps, studies on their mechanism of action are extremely challenging, and this has negatively impacted both the development of new antibiotics that are able to evade these efflux pumps as well as the design of pump inhibitors. The collection of articles in this eBook, published as a Research Topic in Frontiers in Microbiology, section of Antimicrobials, Resistance, and Chemotherapy, aims to update the reader about the latest advances on the structure and function of RND efflux transporters, their roles in the overall multidrug resistance phenotype of Gram-negative pathogens, and on strategies to inhibit their activities. A deeper understanding of the mechanisms by which RND efflux pumps, alone or synergistically with other efflux pumps, are able to limit the concentration of antimicrobial compounds inside the bacterial cell, may pave the way for new, more directed, inhibitor and antibiotic design to ultimately overcome antimicrobial resistance by Gram-negatives. 517 $aBad Bugs in the XXIst Century 610 $aResistance-Nodulation Division transporters 610 $amulti-drug-resistant pathogens 610 $aantibiotic resistance 610 $aGram-Negative Bacteria 610 $abacterial resistance mechanisms 610 $aSuperbugs 610 $aefflux pumps 700 $aHiroshi Nikaido$4auth$079841 702 $aAttilio Vittorio Vargiu$4auth 702 $aKlaas Martinus Pos$4auth 702 $aKeith Poole$4auth 906 $aBOOK 912 $a9910688232803321 996 $aBad Bugs in the XXIst Century: Resistance Mediated by Multi-Drug Efflux Pumps in Gram-Negative Bacteria$93205451 997 $aUNINA