LEADER 03543nam 22006015 450 001 9910686774803321 005 20251113194423.0 010 $a9783031197079$b(electronic bk.) 010 $z9783031197062 024 7 $a10.1007/978-3-031-19707-9 035 $a(MiAaPQ)EBC7233235 035 $a(Au-PeEL)EBL7233235 035 $a(DE-He213)978-3-031-19707-9 035 $a(OCoLC)1374878346 035 $a(PPN)269093281 035 $a(CKB)26428567500041 035 $a(EXLCZ)9926428567500041 100 $a20230331d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDrinfeld Modules /$fby Mihran Papikian 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (541 pages) 225 1 $aGraduate Texts in Mathematics,$x2197-5612 ;$v296 311 08$aPrint version: Papikian, Mihran Drinfeld Modules Cham : Springer International Publishing AG,c2023 9783031197062 320 $aIncludes bibliographical references and index. 327 $aPreface -- Acknowledgements -- Notation and Conventions -- Chapter 1. Algebraic Preliminaries -- Chapter 2. Non-Archimedean Fields -- Chapter 3. Basic Properties of Drinfeld Modules -- Chapter 4. Drinfeld Modules over Finite Fields -- Chapter 5. Analytic Theory of Drinfeld Modules -- Chapter 6. Drinfeld Modules over Local Fields -- Chapter 7. Drinfeld Modules over Global Fields -- Appendix A. Drinfeld modules for general function rings -- Appendix B. Notes on exercises -- Bibliography -- Index. 330 $aThis textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory. After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized. Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic. 410 0$aGraduate Texts in Mathematics,$x2197-5612 ;$v296 606 $aNumber theory 606 $aAlgebra 606 $aGeometry, Algebraic 606 $aNumber Theory 606 $aAlgebra 606 $aAlgebraic Geometry 615 0$aNumber theory. 615 0$aAlgebra. 615 0$aGeometry, Algebraic. 615 14$aNumber Theory. 615 24$aAlgebra. 615 24$aAlgebraic Geometry. 676 $a512.42 700 $aPapikian$b Mihran$01349895 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910686774803321 996 $aDrinfeld Modules$93087718 997 $aUNINA