LEADER 10147nam 2200481 450 001 9910684594503321 005 20230604175947.0 010 $a1-119-81774-9 010 $a1-119-81769-2 035 $a(MiAaPQ)EBC7219858 035 $a(Au-PeEL)EBL7219858 035 $a(OCoLC)1374429858 035 $a(EXLCZ)9926323683600041 100 $a20230604d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSustainable energy storage in the scope of circular economy $eadvanced materials and device design /$fedited by Carlos Miguel Costa 210 1$aChichester, England :$cJohn Wiley & Sons Ltd,$d[2023] 210 4$d©2023 215 $a1 online resource (403 pages) 311 08$aPrint version: Costa, Carlos Miguel Sustainable Energy Storage in the Scope of Circular Economy Newark : John Wiley & Sons, Incorporated,c2023 9781119817680 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 The Central Role of Energy in the Scope of Circular Economy and Sustainable Approaches in Energy Generation and Storage -- 1.1 Introduction -- 1.2 Circular Economy and the Central Role of Energy -- 1.3 The Central Role of Energy in the Scope of Sustainability -- 1.3.1 Energy Generation -- 1.3.2 Energy Storage -- 1.4 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 2 Reactive Metals as Energy Storage and Carrier Media -- 2.1 Introduction -- 2.2 Significance of a Circular Metal Economy for the Energy Transition -- 2.3 Energy Carrier Properties of Reactive Metals -- 2.4 Potential Reactive Metal Energy Carrier and Storage Applications -- 2.4.1 Metals as Thermal Energy Carriers -- 2.4.2 Combustible Metal Fuels, and Hydrogen Carriers -- 2.4.3 Reactive Metal-Based Electrochemical Energy Storage -- 2.5 Economic and Environmental Implications of Reactive Metals -- 2.6 Conclusion and Outlook -- References -- Part II Sustainable Materials for Batteries and Supercapacitors -- Chapter 3 Lithium-Ion Batteries: Electrodes, Separators, and Solid Polymer Electrolytes -- 3.1 Introduction -- 3.2 Lithium-Ion Batteries -- 3.2.1 Electrodes -- 3.2.2 Separator -- 3.2.3 Electrolyte -- 3.3 Sustainable Materials for Li-Ion Batteries -- 3.3.1 Electrodes -- 3.3.2 Separator -- 3.3.3 Solid Polymer Electrolytes -- 3.4 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4 Solid Batteries Chemistries Beyond Lithium -- 4.1 Introduction -- 4.2 Brief Overview of Solid Alkali-Ion and Alkaline-Earth-Ion Electrolytes -- 4.2.1 Types of Solid Electrolytes -- 4.2.2 Insights and Developments Regarding Metal Dendrites in Solid Electrolyte Systems -- 4.3 Solid-State Sodium-Ion Batteries -- 4.3.1 Solid Electrolytes for Sodium Batteries. 327 $a4.3.2 Anode Materials for Solid-State Sodium Batteries -- 4.3.3 Cathode Materials for Solid-State Sodium Batteries -- 4.3.4 Solid-State Sodium Battery, Full-Cell Results -- 4.4 Solid-State Potassium-Ion Batteries -- 4.4.1 Solid Electrolytes for Potassium Batteries -- 4.4.2 Anode Materials for Solid-State Potassium Batteries -- 4.4.3 Cathode Materials and Electrochemical Performance of Solid-State Potassium Batteries -- 4.5 Solid-State Magnesium-Ion Batteries -- 4.5.1 Solid Electrolytes for Magnesium-Ion Batteries -- 4.5.2 Anode Materials for Solid-State Magnesium Batteries -- 4.5.3 Cathode Materials and Electrochemical Performance of Magnesium Batteries -- 4.6 Specific Challenges and Future Perspectives -- References -- Chapter 5 A Rationale for the Development of Sustainable Biodegradable Batteries -- 5.1 Challenges for Powering a Digital Society -- 5.2 State of the Art of Portable Batteries with a Disruptive End of Life -- 5.3 How to Design a Truly Sustainable Battery? -- 5.3.1 Portable Battery Development in a Doughnut Model -- 5.3.1.1 Materials -- 5.3.1.2 Fabrication and Distribution -- 5.3.1.3 Application -- 5.3.1.4 End of Life -- 5.4 Global Trends and Opportunities -- Acknowledgments -- Notes -- References -- Chapter 6 Recent Advances of Sustainable Electrode Materials for Supercapacitor Devices -- 6.1 Introduction -- 6.2 Charge Storage Mechanism -- 6.2.1 Electric Double-Layer Capacitor -- 6.2.2 Pseudocapacitor -- 6.3 Conclusion -- References -- Part III Sustainable Approaches for Fuel Cells -- Chapter 7 Sustainable Materials for Fuel Cell Devices -- 7.1 Introduction -- 7.2 Catalysts -- 7.2.1 Introduction -- 7.2.2 PGM-Based Catalysts -- 7.2.3 PGM-Free Catalysts -- 7.3 Proton Exchange Membrane (PEM) -- 7.3.1 PFSA and Their Composite Membranes -- 7.3.2 SHPs and Their Composite Membranes -- 7.3.3 PBI/H3PO4 Membrane -- 7.4 The Other Components. 327 $a7.4.1 Gas Diffusion Layer (GDL) -- 7.4.2 Bipolar Plate (BP) -- 7.4.3 Current Collector -- 7.4.4 Sealing Material (SM) -- References -- Chapter 8 Recent Advances in Microbial Fuel Cells for Sustainable Energy -- 8.1 Introduction -- 8.1.1 Introduction to Microbial Fuel Cells -- 8.1.2 Electron Transfer Mechanism -- 8.1.3 MFC Substrate -- 8.1.4 Electrode Materials -- 8.2 Materials for Anode -- 8.2.1 Conventional Carbonaceous Materials -- 8.2.2 Metal and Metal Oxide-Based Anode for MFC -- 8.2.3 Natural Waste-Based Anode Material for MFC -- 8.2.4 Modification Approaches for MFC Anode -- 8.3 Materials for Cathode -- 8.3.1 Pt-Based Cathode -- 8.3.2 Nonprecious Metal Cathode -- 8.3.3 Biocathodes -- 8.3.4 Metal-Free Cathode -- 8.4 Conclusion -- References -- Part IV Sustainable Energy Storage Devices and Device Design -- Chapter 9 Multifunctional Sustainable Materials for Energy Storage -- 9.1 Redox Flow Batteries as Alternative Energy Storage Technology for Grid-Scale and Off-Grid Applications -- 9.1.1 Traditional Carbon Electrodes in Redox Flow Batteries -- 9.1.2 Processing of Biomass Into Electroactive Materials -- 9.1.3 Examples of Biomass-Derived Electrodes for Redox Flow Batteries -- References -- Chapter 10 Sustainable Energy Storage Devices and Device Design for Sensors and Actuators Applications -- 10.1 Introduction of Sustainable Energy Storage Devices -- 10.2 Literature Survey -- 10.3 Need for the Sustainable Energy Storage Devices -- 10.3.1 Reduce First -- 10.3.2 Electricity Generation and Health -- 10.3.3 Energy Storing Approaches -- 10.3.4 Storage Systems for Large Amounts of Energy -- 10.4 Sustainable and Ecofriendly Energy Storage -- 10.4.1 Longer Charges -- 10.4.2 Safer Batteries -- 10.4.3 Storing Sunlight as Heat -- 10.4.4 Advanced Renewable Fuels -- 10.5 Different Energy Storage Mechanisms -- 10.5.1 Hydroelectricity. 327 $a10.5.2 Hydroelectric Power Was Generated and Then Transferred -- 10.5.3 A Compressor That Produces Compressed Air -- 10.5.4 Flywheel -- 10.5.5 Gravitational Pull of a Massive Object -- 10.5.6 Thermal -- 10.5.7 Thermal Heat Sensitiveness -- 10.5.8 Latent Heat Thermal (LHTES) -- 10.5.9 Charging System for the Carnot Battery -- 10.5.10 Lithium-Ion Battery -- 10.5.11 Supercapacitor -- 10.5.12 Chemical -- 10.5.13 Hydrogen -- 10.5.14 Electrochemical -- 10.5.15 Methane -- 10.5.16 Biofuels -- 10.5.17 Aluminum -- 10.5.18 Ways Utilizing Electricity -- 10.5.19 Magnetic Materials with Superconductivity -- 10.6 Different Novel 2D Materials for Energy Storage -- 10.6.1 2D Materials for Energy Storage Devices -- 10.6.2 Challenges Facing 2D Energy Technology -- 10.7 Nature-Inspired Materials for Sensing and Energy Storage Applications -- 10.7.1 Sensing and Energy Storage Artificial Nano and Microstructures -- 10.7.2 Bioinspired Hierarchical Nanofibrous Materials -- 10.7.3 Nature-Inspired Polymer Nanocomposites -- 10.7.4 Skin-Inspired Hierarchical Polymer Materials -- 10.7.5 Neuron-Inspired Network Materials -- 10.7.6 Tunable Energy Storage Materials -- 10.7.7 Tunable Sensing Materials -- 10.7.8 Bioinspired Batteries -- 10.7.9 Bioinspired Energy Storage Devices -- 10.8 Conclusions -- References -- Chapter 11 Sustainable Energy Storage Devices and Device Design for in the Scope of Internet of Things -- 11.1 Introduction -- 11.2 New Materials and Manufacturing Methods for Batteries -- 11.3 New Materials and Manufacturing Methods for Supercapacitors -- 11.4 New Designs to Optimize the Management and Energy Needs of the Devices -- 11.5 Recycling Solutions for Energy Storage Systems -- 11.6 Conclusions -- Acknowledgments -- References -- Part V Waste Prevention and Recycling. 327 $aChapter 12 Waste Prevention for Energy Storage Devices Based on Second-Life Use of Lithium-Ion Batteries -- 12.1 Introduction -- 12.1.1 Benefits of Second-Life -- 12.1.2 Economic Benefits -- 12.1.3 Environmental Benefits -- 12.2 Challenges -- 12.2.1 Chemical Challenges -- 12.2.2 Methods of Investigating Lithium-Ion Battery State of Health -- 12.2.3 Engineering Challenges -- 12.2.4 Economic Challenges -- 12.2.5 Legal Challenges -- 12.2.6 Current Implementations -- 12.2.7 Outlook -- References -- Chapter 13 Recycling Procedures for Energy Storage Devices in the Scope of the Electric Vehicle Implementation -- 13.1 Introduction -- 13.2 Lithium-Ion Batteries: Environmental Impact and Sustainability -- 13.3 Lithium-Ion Batteries: Recycling Strategies and Processes -- 13.3.1 Electrode Recycling Approaches -- 13.3.2 Separators/electrolytes -- 13.4 Status of the Battery Electric Vehicle Fleet -- 13.4.1 Battery Demand -- 13.4.2 Battery Electric Vehicle Outlook -- 13.5 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 14 Summary and Outlook -- Acknowledgments -- References -- Index -- EULA. 606 $aElectric batteries$xRecycling 606 $aGreen products 615 0$aElectric batteries$xRecycling. 615 0$aGreen products. 676 $a363.7288 702 $aCosta$b Carlos Miguel$f1991- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910684594503321 996 $aSustainable Energy Storage in the Scope of Circular Economy$93085759 997 $aUNINA