LEADER 01284nam 2200385 450 001 9910684568303321 005 20230515072201.0 035 $a(CKB)5600000000596274 035 $a(NjHacI)995600000000596274 035 $a(EXLCZ)995600000000596274 100 $a20230515d2022 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aArabic Exile Literature in Europe $edefamiliarising forced migration /$fJohanna Sellman 210 1$aEdinburgh :$cEdinburgh University Press,$d2022. 215 $a1 online resource (xi, 266 pages) 225 1 $aEdinburgh studies in modern Arabic literature 311 $a1-3995-0015-5 330 $aAnalyses the aesthetics and politics of contemporary Arabic literature of forced migration in the 21st century. 410 0$aEdinburgh studies in modern Arabic literature. 606 $aArabic literature 606 $aAuthors, Exiled 615 0$aArabic literature. 615 0$aAuthors, Exiled. 676 $a892.709 700 $aSellman$b Johanna$01352521 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910684568303321 996 $aArabic Exile Literature in Europe$93182401 997 $aUNINA LEADER 05726nam 2200781Ia 450 001 9911020358103321 005 20200520144314.0 010 $a9786610270323 010 $a9781280270321 010 $a1280270322 010 $a9780470362969 010 $a0470362960 010 $a9780470855799 010 $a0470855797 010 $a9780470855805 010 $a0470855800 035 $a(CKB)111087027148366 035 $a(EBL)153812 035 $a(OCoLC)807996068 035 $a(SSID)ssj0000291044 035 $a(PQKBManifestationID)11217254 035 $a(PQKBTitleCode)TC0000291044 035 $a(PQKBWorkID)10249037 035 $a(PQKB)10569495 035 $a(MiAaPQ)EBC153812 035 $a(Perlego)2769536 035 $a(EXLCZ)99111087027148366 100 $a20020522d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aHydrolysis, oxidation and reduction /$fedited by Stan M. Roberts and Geraldine Poignant 210 $aChichester, West Sussex, England ;$aNew York $cWiley$dc2002 215 $a1 online resource (245 p.) 225 1 $aCatalysts for fine chemical synthesis ;$vv. 1 300 $aDescription based upon print version of record. 311 08$a9780471981237 311 08$a0471981230 320 $aIncludes bibliographical references and index. 327 $aCatalysts for Fine Chemical Synthesis Volume 1; Contents; Series Preface; Preface to Volume 1; Abbreviations; PART I: REVIEW; 1 The Integration of Biotransformations into the Catalyst Portfolio; 1.1 Hydrolysis of esters, amides, nitriles and oxiranes; 1.2 Reduction reactions; 1.2.1 Reduction of carbonyl compounds; 1.2.2 Reduction of alkenes; 1.3 Oxidative transformations; 1.4 Carbon-carbon bond-forming reactions; 1.5 Conclusions; References; PART II: PROCEDURES; 2 General Information; 3 Asymmetric Epoxidation; 3.1 Introduction; References; 4 Epoxidation of a, b-Unsaturated Carbonyl Compounds 327 $a4.1 Non-asymmetric epoxidation4.2 Asymmetric epoxidation using poly-D-leucine; 4.2.1 Synthesis of leucine N-carboxyanhydride; 4.2.2 Synthesis of immobilized poly-D-leucine; 4.2.3 Asymmetric epoxidation of (E)-benzylideneacetophenone; 4.2.4 Conclusion; 4.3 Asymmetric epoxidation using chiral modified diethylzinc; 4.3.1 Epoxidation of 2-isobutylidene-1-tetralone; 4.3.2 Conclusion; 4.4 Asymmetric epoxidation of (E)-benzylideneacetophenone using the La-(R)-BINOL-Ph(3)PO/cumene hydroperoxide system; 4.4.1 Merits of the system; References; 5 Epoxidation of Allylic Alcohols 327 $a5.1 Non-asymmetric epoxidation5.2 Asymmetric epoxidation using a chiral titanium complex; 5.2.1 Epoxidation of cinnamyl alcohol; 5.2.2 Epoxidation of (E)-2-methyl-3-phenyl-2-propenol; 5.2.3 Epoxidation of (E)-2-hexen-1-ol; 5.2.4 Conclusion; 5.3 Asymmetric epoxidation of (E)-undec-2-en-1-ol using poly(octamethylene tartrate); 5.3.1 Synthesis of branched poly (octamethylene-L-(+)-tartrate); 5.3.2 Asymmetric epoxidation of (E)-undec-2-en-1-ol; References; 6 Epoxidation of Unfunctionalized Alkenes and a, b-Unsaturated Esters 327 $a6.1 Asymmetric epoxidation of disubstituted Z-alkenes using a chiral salen-manganese complex6.1.1 Epoxidation of (Z)-methyl styrene; 6.1.2 Epoxidation of (Z)-ethyl cinnamate; 6.1.3 Conclusion; 6.2 Asymmetric epoxidation of disubstituted E-alkanes using a D-fructose based catalyst; 6.2.1 Epoxidation of (E)-stilbene; 6.2.2 Conclusion; 6.3 Enantioselective epoxidation of (E)-b-methylstyrene by D(2)-symmetric chiral trans-dioxoruthenium (VI) porphyrins; 6.3.1 Preparation of the trans-dioxoruthenium(VI) complexes with D(2)-symmetric porphyrins (H(2)L(1-3)) 327 $a6.3.2 Enantioselective epoxidation of (E)-b-methylstyrene6.3.3 Conclusion; References; 7 Asymmetric Hydroxylation and Aminohydroxylation; 7.1 Asymmetric aminohydroxylation of 4-methoxystyrene; 7.1.1 Conclusion; 7.2 Asymmetric dihydroxylation of (1-cyclohexenyl)acetonitrile; 7.2.1 (R,R)-(1,2-Dihydroxycyclohexyl)acetonitrile acetonide; 7.2.2 Conclusion; References; 8 Asymmetric Sulfoxidation; 8.1 Asymmetric oxidation of sulfides and kinetic resolution of sulfoxides; 8.1.1 Asymmetric oxidation of 4-bromothioanisole; 8.1.2 Kinetic resolution of racemic 4-bromophenyl methyl sulfoxide; References 327 $a9 Asymmetric Reduction of Ketones Using Organometallic Catalysts 330 $aCatalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech catalysts, which add enormously to the repertoire of synthetic possibilities. However, catalysts are occasionally capricious, sometimes difficult to use and almost always require both skill and experience in order to achieve optimal results. This series aims to be a practical help for advanced undergraduate, graduate and postgraduate students, as well as experienced chemists in industry and academia working in organic and organometalli 410 0$aCatalysts for fine chemical synthesis ;$vv. 1. 606 $aEnzymes$xBiotechnology 606 $aOrganic compounds$xSynthesis 606 $aHydrolysis 606 $aOxidation-reduction reaction 615 0$aEnzymes$xBiotechnology. 615 0$aOrganic compounds$xSynthesis. 615 0$aHydrolysis. 615 0$aOxidation-reduction reaction. 676 $a660.634 676 $a660/.28443 701 $aRoberts$b Stanley M$0754844 701 $aPoignant$b Geraldine$043932 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911020358103321 996 $aHydrolysis, oxidation and reduction$94421579 997 $aUNINA