LEADER 03565nam 22006255 450 001 9910682562103321 005 20250327082459.0 010 $a9789819905935 010 $a9819905931 024 7 $a10.1007/978-981-99-0593-5 035 $a(MiAaPQ)EBC7217833 035 $a(Au-PeEL)EBL7217833 035 $a(OCoLC)1373985360 035 $a(DE-He213)978-981-99-0593-5 035 $a(PPN)269100733 035 $a(CKB)26291141800041 035 $a(EXLCZ)9926291141800041 100 $a20230320d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBayesian Real-Time System Identification $eFrom Centralized to Distributed Approach /$fby Ke Huang, Ka-Veng Yuen 205 $a1st ed. 2023. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2023. 215 $a1 online resource (286 pages) 311 08$aPrint version: Huang, Ke Bayesian Real-Time System Identification Singapore : Springer Singapore Pte. Limited,c2023 9789819905928 320 $aIncludes bibliographical references. 327 $aChapter 1. Introduction -- Chapter 2. System identification by Kalman filter and extended Kalman filter -- Chapter 3. Outlier detection for real-time system identification -- Chapter 4. Real-time updating of noise parameters for structural identification -- Chapter 5. Bayesian model class selection for real-time system identification -- Chapter 6. Online distributed identification for wireless sensor networks -- Chapter 7. Online distributed identification handling asynchronous data and multiple outlier-corrupted data. 330 $aThis book introduces some recent developments in Bayesian real-time system identification. It contains two different perspectives on data processing for system identification, namely centralized and distributed. A centralized Bayesian identification framework is presented to address challenging problems of real-time parameter estimation, which covers outlier detection, system, and noise parameters tracking. Besides, real-time Bayesian model class selection is introduced to tackle model misspecification problem. On the other hand, a distributed Bayesian identification framework is presented to handle asynchronous data and multiple outlier corrupted data. This book provides sufficient background to follow Bayesian methods for solving real-time system identification problems in civil and other engineering disciplines. The illustrative examples allow the readers to quickly understand the algorithms and associated applications. This book is intended for graduate students and researchersin civil and mechanical engineering. Practitioners can also find useful reference guide for solving engineering problems. 606 $aDynamics 606 $aNonlinear theories 606 $aStatistics 606 $aCivil engineering 606 $aApplied Dynamical Systems 606 $aBayesian Inference 606 $aCivil Engineering 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aStatistics. 615 0$aCivil engineering. 615 14$aApplied Dynamical Systems. 615 24$aBayesian Inference. 615 24$aCivil Engineering. 676 $a519.542 700 $aHuang$b Ke$01347168 702 $aYuen$b Ka-Veng 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910682562103321 996 $aBayesian real-time system identification$93419634 997 $aUNINA