LEADER 01220oam 2200325zu 450 001 9910678450403321 005 20210804000356.0 035 $a(CKB)1000000000565349 035 $a(SSID)ssj0000404924 035 $a(PQKBManifestationID)12146921 035 $a(PQKBTitleCode)TC0000404924 035 $a(PQKBWorkID)10354502 035 $a(PQKB)10459985 035 $a(EXLCZ)991000000000565349 100 $a20160829d2004 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 10$aBrief Notes: Shopping Center Management 210 31$a[Place of publication not identified]$cInternational Council of Shopping Centers$d2004 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-58268-028-0 327 $g[v. 1]. Management overview -- [v. 2]. Finance -- [v. 3]. Insurance and risk management -- [v. 4]. The lease and its language -- [v. 5]. Leasing strategies -- [v. 6]. Maintenance -- [v. 7]. Marketing -- [v. 8]. Retailing -- [v. 9]. Security. 712 02$aInternational Council of Shopping Centers. 801 0$bPQKB 906 $aBOOK 912 $a9910678450403321 996 $aBrief Notes: Shopping Center Management$92559668 997 $aUNINA LEADER 02389nam0 22004933i 450 001 VAN00297518 005 20250826103925.729 017 70$2N$a9783540691563 100 $a20250826d1997 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aPerturbation Theory for the Schrödinger Operator with a Periodic Potential$fYulia E. Karpeshina 210 $aBerlin$cSpringer$d1997 215 $aVII, 352 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1663 500 1$3VAN00234387$aPerturbation Theory for the Schrödinger Operator with a Periodic Potential$91424655 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35B20$xPerturbations in context of PDEs [MSC 2020]$3VANC023072$2MF 606 $a35J10$xSchrödinger operator, Schrödinger equation [MSC 2020]$3VANC022235$2MF 606 $a35P15$xEstimation of eigenvalues in context of PDEs [MSC 2020]$3VANC021224$2MF 606 $a35P20$xAsymptotic distribution of eigenvalues in context of PDEs [MSC 2020]$3VANC022648$2MF 606 $a81Q05$xClosed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics [MSC 2020]$3VANC022770$2MF 606 $a81Q10$xSelfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020]$3VANC020683$2MF 610 $aOperators$9KW:K 610 $aPartial Differential Equations$9KW:K 610 $aPeriodicity$9KW:K 610 $aPerturbation Theory$9KW:K 610 $aPotential$9KW:K 610 $aSchrödinger equations$9KW:K 620 $dBerlin$3VANL000066 700 1$aKarpeshina$bJulija E.$3VANV044307$0725865 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20251003$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0094264$zhttps://doi.org/10.1007/BFb0094264 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00297518 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 12393 $e08eMF12393 20250929 996 $aPerturbation theory for the Schrodinger operator with a periodic potential$91424655 997 $aUNICAMPANIA