LEADER 01458nam 2200481 450 001 9910158857703321 005 20170503085359.0 010 $a3-631-71612-5 010 $a3-631-71613-3 035 $a(CKB)3710000001010885 035 $a(MiAaPQ)EBC4777153 035 $a(PPN)229160751 035 $a(EXLCZ)993710000001010885 100 $a20170119h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMetaphors in management-blend of theory and practice /$fMichal Chmielecki, Lukasz Sulkowski 210 1$aFrankfurt am Main, Germany :$cPL Academic Research,$d2017. 210 4$d©2017 215 $a1 online resource (208 pages) 225 0 $aNew Horizons in Management Sciences ;$vVolume 5 311 $a3-631-71611-7 320 $aIncludes bibliographical references. 606 $aStrategic planning 606 $aMetaphor$xSocial aspects 606 $aCreative thinking 615 0$aStrategic planning. 615 0$aMetaphor$xSocial aspects. 615 0$aCreative thinking. 676 $a658.4012 700 $aChmielecki$b Michal$01232308 702 $aChmielecki$b Michal 702 $aSulkowski$b Lukasz 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910158857703321 996 $aMetaphors in management-blend of theory and practice$92861206 997 $aUNINA LEADER 03477nam 22005295 450 001 9910678241703321 005 20251113174002.0 010 $a3-031-13718-3 024 7 $a10.1007/978-3-031-13718-1 035 $a(MiAaPQ)EBC7209173 035 $a(Au-PeEL)EBL7209173 035 $a(CKB)26191945400041 035 $a(DE-He213)978-3-031-13718-1 035 $a(PPN)269092986 035 $a(EXLCZ)9926191945400041 100 $a20230303d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometric Harmonic Analysis II $eFunction Spaces Measuring Size and Smoothness on Rough Sets /$fby Dorina Mitrea, Irina Mitrea, Marius Mitrea 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (938 pages) 225 1 $aDevelopments in Mathematics,$x2197-795X ;$v73 311 08$aPrint version: Mitrea, Dorina Geometric Harmonic Analysis II Cham : Springer International Publishing AG,c2023 9783031137174 320 $aIncludes bibliographical references. 327 $a1 Preliminary Functional Analytic Matters -- 2 Abstract Fredholm Theory -- 3 Functions of Vanishing Mean Oscillations and Vanishing Hölder Moduli -- 4 Hardy Spaces on Ahlfors Regular Sets -- 5 Banach Function Spaces, Extrapolation, and Orlicz Spaces -- 6 Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets -- 7 Besov and Triebel-Lizorkin Spaces on Ahlfors Regular Sets -- 8 Boundary Traces from Weighted Sobolev Spaces into Besov Spaces -- 9 Besov and Triebel-Lizorkin Spaces in Open Sets -- 10 Strong and Weak Normal Boundary Traces of Vector Fields in Hardy and Morrey Spaces -- 11 Sobolev Spaces on the Geometric Measure Theoretic Boundary of Sets of Locally Finite Perimeter -- A. Terms and Notation Used in Volume II. References -- Index. 330 $aThis monograph is part of a larger program, materializing in five volumes, whose principal aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. Volume II is concerned with function spaces measuring size and/or smoothness, such as Hardy spaces, Besov spaces, Triebel-Lizorkin spaces, Sobolev spaces, Morrey spaces, Morrey-Campanato spaces, spaces of functions of Bounded Mean Oscillations, etc., in general geometric settings. Work here also highlights the close interplay between differentiability properties of functions and singular integral operators. The text is intended for researchers, graduate students, and industry professionals interested in harmonic analysis, functional analysis, geometric measure theory, and function space theory. 410 0$aDevelopments in Mathematics,$x2197-795X ;$v73 606 $aMathematical analysis 606 $aIntegral Transforms and Operational Calculus 615 0$aMathematical analysis. 615 14$aIntegral Transforms and Operational Calculus. 676 $a780 676 $a515.42 700 $aMitrea$b Dorina$0521700 702 $aMitrea$b Irina 702 $aMitrea$b Marius 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910678241703321 996 $aGeometric harmonic analysis II$93371439 997 $aUNINA