LEADER 05302nam 2200637Ia 450 001 9910677960703321 005 20200520144314.0 010 $a1-280-51974-6 010 $a9786610519743 010 $a3-527-60351-4 010 $a3-527-60443-X 035 $a(CKB)1000000000377127 035 $a(EBL)481670 035 $a(SSID)ssj0000168102 035 $a(PQKBManifestationID)11161756 035 $a(PQKBTitleCode)TC0000168102 035 $a(PQKBWorkID)10179259 035 $a(PQKB)11583892 035 $a(MiAaPQ)EBC481670 035 $a(PPN)152352813 035 $a(OCoLC)85820453 035 $a(EXLCZ)991000000000377127 100 $a20040717d2005 fy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 04$aThe handbook of plant genome mapping $egenetic and physical mapping /$fedited by Khalid Meksem and Gunter Kahl 210 $aWeinheim $cWiley-VCH$dc2005 215 $a1 online resource (404 p.) 300 $aDescription based upon print version of record. 311 $a3-527-31116-5 320 $aIncludes bibliographical references and index. 327 $aThe Handbook of Plant Genome Mapping; Preface; Contents; List of Contributors; Part I Genetic Mapping; 1 Mapping Populations and Principles of Genetic Mapping; Overview; Abstract; 1.1 Introduction; 1.2 Mapping Populations; 1.2.1 Mapping Populations Suitable for Self-fertilizing Plants; 1.2.1.1 F(2) Populations; 1.2.1.2 Recombinant Inbred Lines; 1.2.1.3 Backcross Populations; 1.2.1.4 Introgression Lines: Exotic Libraries; 1.2.1.5 Doubled Haploid Lines; 1.2.2 Mapping Populations for Cross-pollinating Species; 1.2.3 Two-step Strategies for Mapping Mutants and DNA Fragments 327 $a1.2.4 Chromosome-specific Tools for Mapping1.2.5 Mapping in Natural Populations/Breeding Pools; 1.2.6 Mapping Genes and Mutants to Physically Aligned DNA; 1.2.7 Specific Mapping Problems; 1.3 Discussion; Acknowledgments; References; 2 Molecular Marker Systems for Genetic Mapping; Abstract; 2.1 Introduction; 2.2 DNA-based Markers Popularly Used in Genetic Mapping; 2.2.1 RFLP; 2.2.1.1 Conventional RFLP Analysis; 2.2.1.2 PCR-RFLP; 2.2.1.3 Mismatch PCR-RFLP; 2.2.2 RAPD; 2.2.3 SSR Markers; 2.2.3.1 Conventional SSR Analysis; 2.2.3.2 ISSR; 2.2.3.3 STMP; 2.2.4 AFLP; 2.2.4.1 Conventional AFLP Analysis 327 $a2.2.4.2 f-AFLP2.2.4.3 cDNA-AFLP and HiCEP; 2.2.4.4 TE-AFLP; 2.2.4.5 MEGA-AFLP; 2.2.4.6 MITE-AFLPs; 2.2.4.7 AFLP Conversion; 2.2.5 REMAP and IRAP; 2.2.5.1 IRAP; 2.2.5.2 REMAP; 2.2.6 SRAP; 2.3 Discussion; References; 3 Methods and Software for Genetic Mapping; Overview; Abstract; 3.1 Introduction; 3.1.1 Methods and Tools for Genetic Linkage Mapping in Plants; 3.1.1.1 Statement of the Problem; 3.1.2 Locus Grouping; 3.1.3 Locus Ordering; 3.1.4 Multilocus Distance Estimation; 3.1.5 Using Variant and Mixed Cross Designs; 3.1.5.1 Outbreeding Species; 3.1.5.2 Autopolyploid Species 327 $a3.1.5.3 Combining Datasets3.1.6 Linkage-mapping Software Availability, Interfaces, and Features; 3.2 Methods and Tools for QTL Mapping in Plants; 3.2.1 Statement of the Problem; 3.2.2 Single-marker Association; 3.2.2.1 Metric Traits; 3.2.2.2 Categorical Traits; 3.2.3 Interval Mapping: Simple (SIM); 3.2.3.1 ML Methods; 3.2.3.2 Least-squares (Regression) and Nonparametric Methods; 3.2.4 Interval Mapping: Composite (CIM); 3.2.5 Significance Testing; 3.2.6 Interval Mapping: Multiple-QTL Model Building; 3.2.6.1 Stepwise and Exhaustive-search Methods for Building Multiple-QTL Models 327 $a3.2.6.2 Markov Chain Monte Carlo (MCMC) Methods3.2.6.3 Genetic Algorithms; 3.2.7 Multiple-trait (MT) QTL Mapping; 3.2.8 Multiple-cross (MC) QTL Mapping; 3.2.9 Computational Optimization Methods; 3.3 Future Directions in Mapping Methods and Tools; 3.3.1 Future of Linkage and QTL Mapping; 3.3.2 Adequacy of Software Tools for Plant Mapping; 3.3.2.1 Software Merit Criteria; 3.3.2.2 Analytical Scope; 3.3.2.3 Ease of Learning and Use; 3.3.2.4 Accessibility and Extensibility; 3.3.3 A Development Model for Public Genetic Mapping Software; References 327 $a4 Single nucleotide Polymorphisms: Detection Techniques and Their Potential for Genotyping and Genome Mapping 330 $aWhile the complete sequencing of the genomes of model organisms such as a multitude of bacteria and archaea, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the mouse and human genomes have received much public attention, the deciphering of plant genomeswas greatly lagging behind. Up to now, only two plant genomes, one of the model plant Arabidopsis thaliana and one of the crop species rice (Oryza sativa) have been sequenced, though a series of other crop genome sequencing projects are underway. Notwithstanding this public bias towards 606 $aPlant genome mapping 606 $aBotany 615 0$aPlant genome mapping. 615 0$aBotany. 676 $a572.862 676 $a581.35015118 701 $aMeksem$b Khalid$0313290 701 $aKahl$b Gunter$0431627 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910677960703321 996 $aThe handbook of plant genome mapping$93069415 997 $aUNINA