LEADER 01343nam--2200397---450- 001 990000845670203316 005 20050330103137.0 035 $a0084567 035 $aUSA010084567 035 $a(ALEPH)000084567USA01 035 $a0084567 100 $a20020107d1994----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aRoma nella letteratura storica dall'antichitą ad oggi$fPier Fausto Palukmbo$gcon, in appendice, un saggio su Roma e antiRoma nella coscienza storica 210 $aRoma$cEdizioni del lavoro$d1994 215 $aVI, 425 p.$d25 cm 225 2 $aBiblioteca storica$v13 410 $12001$aBiblioteca storica$v13 606 $aRoma$xStoria$xFonti 676 $a945.632 700 1$aPALUMBO,$bPier Fausto$0137974 801 0$aIT$bsalbc$gISBD 912 $a990000845670203316 951 $aIX.4. 84(III A COLL. 53/13)$b119194 LM$cIII A COLL. 951 $aIX.4. 84a(III A COLL. 53/13BIS)$b123332 LM$cIII A COLL. 959 $aBK 969 $aUMA 979 $aPATTY$b90$c20020107$lUSA01$h1029 979 $aPATTY$b90$c20020107$lUSA01$h1030 979 $c20020403$lUSA01$h1730 979 $aPATRY$b90$c20040406$lUSA01$h1658 979 $aCOPAT2$b90$c20050330$lUSA01$h1031 996 $aRoma nella letteratura storica dall'antichitą ad oggi$9234708 997 $aUNISA LEADER 10773nam 2200517 450 001 9910677778303321 005 20230630003129.0 010 $a1-119-67038-1 010 $a1-119-67039-X 010 $a1-119-67037-3 035 $a(CKB)4100000011945717 035 $a(MiAaPQ)EBC6629948 035 $a(Au-PeEL)EBL6629948 035 $a(OCoLC)1255229293 035 $a(EXLCZ)994100000011945717 100 $a20220129d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHandbook of assisted and amendment-enhanced sustainable remediation technology /$fedited by Majeti N. V. Prasad 210 1$aHoboken, New Jersey :$cWiley,$d[2021] 210 4$d©2021 215 $a1 online resource (659 pages) 311 $a1-119-67036-5 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Global Scenario of Remediation and Combined Clean Biofuel Production -- Chapter 1 Global Remediation Industry and Trends -- 1.1 Introduction -- 1.1.1 Rise of Phytoremediation -- 1.1.2 The Phytoremediation Industry -- 1.1.3 The Key Players in Global Remediation and Phytoremediation -- 1.1.3.1 Markets by Sector -- 1.1.3.2 Markets by Application -- 1.1.3.3 Sizes of Market Sectors Potentially Available to Phytoremediation -- 1.2 Global -- 1.3 Mining in Latin America and Phytoremediation Possibilities -- Acknowledgements -- References -- Chapter 2 Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production -- 2.1 Introduction -- 2.2 Bioenergy: The Role of Biomass -- 2.3 Assisted Phytoremediation: Valorization of Biomass -- 2.4 Assisted Phytoremediation?Bioenergy: An Integrated Approach -- 2.5 Conclusions -- References -- Part II Biochar?Based Soil and Water Remediation -- Chapter 3 Biochar - Production, Properties, and Service to Environmental Protection against Toxic Metals -- 3.1 Introduction -- 3.2 How to Produce Biochar -- 3.3 Biochar Properties -- 3.4 Biochar in the Service of Environmental Protection -- 3.5 Soil Characteristics -- 3.6 Environmental Hazards Caused by Heavy Metals -- 3.7 Characteristics of Selected Heavy Metals -- 3.8 Zinc -- 3.9 Copper -- 3.10 Lead -- 3.11 Cadmium -- 3.12 Soil Pollution -- 3.13 What Is Remediation and What Is it for? -- 3.14 Improving Soil Properties -- 3.15 Removal of Impurities -- 3.16 The Addition of Biochar to Contaminated Soils may be Such a Solution -- 3.17 Summary -- References -- Chapter 4 Biochar?based Water Treatment Systems for Clean Water Provision -- 4.1 Introduction -- 4.2 Synthesis of Biochar -- 4.2.1 Pyrolysis Process -- 4.2.2 Pyrolysis Technology -- 4.3 Biochar Properties. 327 $a4.3.1 Biochar Surface Chemistry -- 4.3.2 Pyrolysis Effect on Chemical Properties of Biochar -- 4.3.3 Pyrolysis Effect on Physical Properties of Biochar -- 4.4 Mechanism of Adsorption -- 4.4.1 Heavy Metal Removal Mechanism -- 4.4.2 Organic Contaminants Removal Mechanism -- 4.4.3 Pathogenic Organism Removal Mechanism -- 4.5 Factors Affecting Adsorption of Contaminants on Biochar -- 4.5.1 Biochar Properties -- 4.5.2 Post Treatment or Modification -- 4.5.3 Solution pH -- 4.5.4 Co?existed Ions -- 4.5.5 Dosage of Adsorbents -- 4.5.6 Temperature -- 4.5.7 Contact Time -- 4.5.8 Initial Concentration of Pollutants -- 4.6 Biochar?Based Water Treatment Systems -- 4.6.1 Biochar Supply -- 4.6.2 Biochar Use -- 4.6.3 Regeneration -- 4.6.3.1 Thermal Regeneration -- 4.6.3.2 Solvent Regeneration -- 4.6.3.3 Microwave Irradiation Regeneration -- 4.6.4 Supercritical Fluid Regeneration -- 4.6.5 Sustainability of Biochar Utilization -- References -- Chapter 5 Biochar for Wastewater Treatment -- 5.1 Biochar Production and Its Characteristics -- 5.2 Modification of Biochar -- 5.3 Comparison of Biochar with Activated Carbon -- 5.4 Biochar Adsorption Mechanism -- 5.5 Adsorption Kinetics of Aqueous?Phase Organic Compounds -- 5.6 Influence of pH, Temperature, and Biochar Dose on the Adsorption Process -- 5.7 Biochar Technology in Wastewater Treatment -- 5.8 Summary -- Acknowledgment -- References -- Chapter 6 Biochar for Bioremediation of Toxic Metals -- 6.1 The Idea of Using Biochar with the Assumption of Closed Circulation -- 6.2 The Role of Biochar in Soil ? General Information -- 6.3 Biochar as a Sorbent - Physical and Structural Composition -- 6.4 The Role of Biochar in Removing Heavy Metals from Soil -- 6.5 Utilization of Selected Heavy Metals from Soil -- 6.6 Mechanism of Heavy Metals?Biochar -- 6.7 Summary -- Acknowledgment -- References. 327 $aChapter 7 Biochar Assisted Remediation of Toxic Metals and Metalloids -- 7.1 Introduction -- 7.2 Biochar and its Remarkable Physical Chemical and Biological Properties -- 7.2.1 Physical Properties of Biochar -- 7.2.1.1 Density and Porosity -- 7.2.1.2 Surface Area of Biochar -- 7.2.1.3 Pore Volume and Pore Size Distribution -- 7.2.1.4 Water Holding Capacity and Hydrophobicity -- 7.2.1.5 Mechanical Stability -- 7.2.2 Chemical Properties -- 7.2.2.1 Atomic Ratios -- 7.2.2.2 Elemental Composition -- 7.2.2.3 Energy Content -- 7.2.2.4 Fixed Carbon and Volatile Matter -- 7.2.2.5 Presence of Functional Groups -- 7.2.2.6 pH of Biochar -- 7.2.2.7 Cation Exchange Capacity -- 7.2.3 Biological Properties of Biochar -- 7.2.3.1 Biochar as a Habitat for Soil Microorganisms -- 7.2.3.2 Biochar as a Substrate for the Soil Biota -- 7.3 Heavy Metal Pollutants -- 7.4 Interactions between Biochar and Heavy Metal -- 7.4.1 Types of Interactions Occurs between Biochar and Heavy Metals -- 7.4.1.1 Direct Interaction -- 7.4.1.2 Electrostatic Attractions -- 7.4.1.3 Ion Exchange -- 7.4.1.4 Complexation -- 7.4.1.5 Precipitation -- 7.4.1.6 Sorption -- 7.4.1.7 Indirect Interactions -- 7.4.1.8 Biochar Metal Interactions -- 7.5 Biochar as a Bioremediator -- 7.5.1 Bioremediation of Heavy Metals Pollutant by the Use of Microorganism and Biochar -- 7.5.2 Bioremediation of Heavy Metal Pollutants by the Use of Plants and Biochar -- 7.5.3 Bioremediation of Heavy Metals Pollutant through the Combination of Biochar, Plant, and Microorganism -- 7.6 Application of Biochar in Bioremediation of Mining Area -- 7.6.1 Application of Biochar in Bioremediation of Acid Mine Wastes -- 7.6.2 Alkaline Tailing Soils -- 7.7 Limitation of Biochar Amended Bioremediation -- 7.7.1 Phytoextraction of Arsenic -- 7.7.2 Phytoremediation of Sewage Sludge -- 7.8 Conclusion -- References. 327 $aChapter 8 Use of Biochar as an Amendment for Remediation of Heavy Metal?Contaminated Soils -- 8.1 Introduction -- 8.2 Biochar Production Conditions -- 8.3 Modification to Improve Remediation Potential of Biochar -- 8.4 Mechanism of Metal Immobilization by Biochar -- 8.4.1 Direct Biochar-Heavy Metal Interaction -- 8.4.1.1 Electrostatic Attraction -- 8.4.1.2 Ion Exchange -- 8.4.1.3 Complexation -- 8.4.1.4 Precipitation -- 8.4.2 Indirect Biochar-Heavy Metals-Soils Interactions -- 8.4.2.1 Impact on Soil pH, CEC, and Organic Carbon Content, thus Metal Mobility -- 8.4.2.2 Impacts on Soil Mineral Composition and Metal Mobility by Biochar Application -- 8.5 Immobilization of Heavy Metals by Biochar -- 8.6 Application of Biochar for Immobilization of Heavy Metals and Enhancement of Plant Growth -- 8.7 Conclusions -- References -- Chapter 9 Biochars for Remediation of Recalcitrant Soils to Enhance Agronomic Performance -- 9.1 Introduction -- 9.2 Biochar Properties -- 9.2.1 Production -- 9.2.2 Properties -- 9.3 Application and Impact of Biochar on Soils -- 9.3.1 Biochar in Soil Carbon Sequestration -- 9.3.2 Influence on Soil Physical and Chemical Properties -- 9.3.3 Influence on Microbial Activity and Soil Biota -- 9.4 Conclusions -- Acknowledgment -- References -- Chapter 10 Biochar Amendment Improves Crop Production in Problematic Soils -- 10.1 Introduction -- 10.2 Roles of Biochar in Soil Improvement -- 10.2.1 Physical Characteristics -- 10.2.2 Chemical Properties -- 10.2.3 Biological Indices -- 10.3 Other Roles of Biochar -- 10.4 Agricultural Productivity in Biochar Amended Soil -- 10.4.1 Advantages of Using Biochar as a Soil Supplement -- 10.5 Reclamation of Degraded Soils Using Biochar -- 10.6 Conclusions -- References -- Part III Organic Amendments Use in Remediation. 327 $aChapter 11 Use of Organic Amendments in Phytoremediation of Metal?Contaminated Soils: Prospects and Challenges -- 11.1 Agricultural Organic Waste -- 11.2 Forestry By?Products -- 11.3 Composts -- 11.4 Sewage Sludge/Biosolids -- 11.5 Humic Substances -- 11.6 Biochar -- 11.7 Constructed Organic?Derived Soils -- 11.8 Directions for Future Research -- Acknowledgments -- References -- Chapter 12 Rice Husk and Wood Derived Charcoal for Remediation of Metal Contaminated Soil -- 12.1 Introduction -- 12.2 Heavy Metal Contamination in Soils -- 12.3 Rice Husk Ash (RHA) - Production, Characteristics, and Application -- 12.3.1 Utilization of Rice Husk Ash as Soil Amendment and Metal Removal -- 12.4 Charcoal - Production and Applications -- 12.4.1 Charcoal as Amendment and Metal Removal -- 12.5 Conclusion -- References -- Chapter 13 Enhanced Composting Using Woody Biomass and Its Application in Wasteland Reclamation -- 13.1 Introduction -- 13.2 Composting Process -- 13.3 Types of Composting -- 13.4 Woody Biomass Waste as Co?composting Material -- 13.4.1 Usage of Woody Biochar in Composting -- 13.4.2 Woody Biochar?Microbial Consortia -- 13.4.3 Usage of Wood Ash in Composting -- 13.4.4 Usage of Wood Derived Materials in Composting -- 13.5 Advantages and Disadvantages of Composting Woody Biomass -- 13.6 Application of Woody Biomass Compost in Restoration of Wastelands -- 13.7 Conclusion -- Acknowledgment -- References -- Chapter 14 Sewage Sludge as Soil Conditioner and Fertilizer -- 14.1 Introduction -- 14.2 Sewage Sludge from Wastewater Treatment Plants -- 14.2.1 Soil Remediation Practices -- 14.2.2 Sewage Sludge in the Remediation of Degraded Soils -- 14.2.2.1 Sewage Sludge as a Source of NPK -- 14.2.3 Substrates Produced or Based on Sewage Sludge-Biosolids -- 14.2.4 Biosolids as Fertility Restorer and Conditioner. 327 $a14.2.5 Impact of Sewage Sludge and Biosolids on Soil Microorganisms. 606 $aPhytoremediation 606 $aSoil remediation 615 0$aPhytoremediation. 615 0$aSoil remediation. 676 $a628.4 702 $aPrasad$b M. N. V$g(Majeti Narasimha Vara),$f1953- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910677778303321 996 $aHandbook of assisted and amendment-enhanced sustainable remediation technology$93068126 997 $aUNINA