LEADER 04275nam 2200649 a 450 001 9910672188803321 005 20221108090219.0 010 $a1-4492-0565-8 035 $a(CKB)1000000000436413 035 $a(EBL)3175857 035 $a(OCoLC)923021588 035 $a(SSID)ssj0000702117 035 $a(PQKBManifestationID)11428554 035 $a(PQKBTitleCode)TC0000702117 035 $a(PQKBWorkID)10679251 035 $a(PQKB)10482759 035 $a(MiAaPQ)EBC3175857 035 $a(WaSeSS)Ind00032824 035 $a(OCoLC)928718869 035 $a(FlNmELB)ELB35660 035 $a(EXLCZ)991000000000436413 100 $a20130607d2007 uy 0 101 0 $aspa 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAna?lisis de eficiencia de los departamentos universitarios$b[recurso electronico]$eel caso de la universidad de Sevilla /$fFrancisco de Asis Di?ez Marti?n 210 $aMadrid $cDykinson$d2007 215 $a1 online resource (172 p.) 225 1 $aCiencias Juri?dicas y Sociales ;$v68 300 $aDescription based upon print version of record. 311 $a84-9849-007-3 327 $aANA?LISIS DE EFICIENCIA DE LOS DEPARTAMENTOS UNIVERSITARIOS. EL CASO DE LA UNIVERSIDAD DE SEVILLA; PAGINA LEGAL; I?NDICE; INTRODUCCIO?N; CAPI?TULO I: EL ANA?LISIS ENVOLVENTE DE DATOS; 1.- INTRODUCCIO?N; 2.- ORIGEN DE LOS ME?TODOS DE EFICIENCIA (1957); 3.- ME?TODO PARAME?TRICO VS NO PARAME?TRICO; 3.1.- Modelos Parame?tricos.; 3.1.1.- Modelo de la Frontera Estoca?stica (SFA).; 3.2.- Modelos No Parame?tricos.; 3.2.1.- Aproximacio?n al Modelo CCR.; 3.2.2.- Modelo BCC.; 3.3.- Diferencias entre las metodologi?as no parame?trica y parame?trica, (...); 4.- DEFINICIO?N DEL ANA?LISIS ENVOLVENTE DE DATOS (DEA) 327 $a5.- CARACTERI?STICAS DEL ANA?LISIS ENVOLVENTE DE DATOS5.1.- Objetivos y Utilidad del DEA.; 5.2.- Eficiencia Relativa vs Eficiencia Pareto.; 5.3.- ¿Que? son las DMU?; 5.4.- Funcionamiento del Ana?lisis Envolvente de Datos.; 5.5.- DEA: Aspectos positivos y negativos.; 5.5.1.- Aspectos Positivos.; 5.5.2.- Aspectos Negativos.; CAPI?TULO II: METODOLOGI?A DE APLICACIO?N DEL DEA; 1.- INTRODUCCIO?N; 2.- ETAPA I: ESPECIFICACIO?N DEL MODELO; 2.1.- Dimensio?n del Modelo.; 2.2.- Seleccio?n de unidades (DMU).; 2.3.- Seleccio?n de las variables.; 2.4.- Revisio?n, errores de medida. 327 $a2.5.- Seleccio?n hipo?tesis sobre rendimientos de escala.3.- ETAPA II: EJECUCIO?N DEL MODELO; 4.- ETAPA III: ANA?LISIS DE LOS RESULTADOS; 4.1.- Resultados del ana?lisis.; 4.2.- Frontera de eficiencia.; 4.3.- Mejoras potenciales.; 4.4.- Grupo de referencia.; CAPI?TULO III: ANA?LISIS DEA EN LA UNIVERSIDAD DE SEVILLA; 1.- INTRODUCCIO?N; 2.- ESTUDIOS DEA EN LA EDUCACIO?N SUPERIOR; 3.- LA UNIVERSIDAD DE SEVILLA; 4.- ESPECIFICACIO?N DEL MODELO.; 4.1.- ¿Por que? el Ana?lisis Envolvente de Datos?; 4.2.- Unidades seleccionadas; 4.3.- Seleccio?n de las variables; 4.3.1.- Entradas (Inputs). 327 $a4.3.2.- Salidas (Outputs).4.3.3.- Constructos (Inputs-Outputs); 4.4.- Dimensio?n del modelo.; 4.5.- Errores de medida.; 4.6.- Rendimientos de escala.; 4.7.- Resumen del modelo.; 5.- EJECUCIO?N DEL MODELO; 5.1.- Orientacio?n del modelo.; 5.2.- Ejecucio?n matema?tica y relacio?n de resultados.; 6.- ANALISIS DE LOS RESULTADOS; 6.1.- Modelo A, ramas cienti?ficas.; 6.1.1.- Ciencias Sociales o Humanas.; 6.1.2.- Ciencias Puras y Aplicadas.; 6.2.- Modelo B, exclusio?n actividad investigadora.; CONCLUSIONES; BIBLIOGRAFI?A 410 0$aCiencias juri?dicas y sociales ;$v68. 606 $aAna?lisis de datos 606 $aEducacio?n 606 $aUniversidades 606 $aUniversities and colleges$zSpain 606 $aEducation 615 4$aAna?lisis de datos. 615 4$aEducacio?n. 615 4$aUniversidades. 615 0$aUniversities and colleges 615 0$aEducation. 700 $aAsis Di?ez Marti?n$b Francisco de$01334540 712 02$ae-libro, Corp. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910672188803321 996 $aAna?lisis de eficiencia de los departamentos universitarios$93046182 997 $aUNINA LEADER 03610nam 2200841 450 001 9910820129103321 005 20200520144314.0 010 $a0-691-11541-9 010 $a1-4008-6531-X 010 $a1-322-11689-X 010 $a1-282-08718-5 010 $a9786612087189 024 7 $a10.1515/9781400824618 035 $a(CKB)1000000000756277 035 $a(EBL)445491 035 $a(OCoLC)362452601 035 $a(SSID)ssj0001523578 035 $a(PQKBManifestationID)12591899 035 $a(PQKBTitleCode)TC0001523578 035 $a(PQKBWorkID)11467748 035 $a(PQKB)11008237 035 $a(SSID)ssj0000242054 035 $a(PQKBManifestationID)11215404 035 $a(PQKBTitleCode)TC0000242054 035 $a(PQKBWorkID)10301241 035 $a(PQKB)11470710 035 $a(OCoLC)646805513 035 $a(MdBmJHUP)muse35918 035 $a(MdBmJHUP)muse43452 035 $a(DE-B1597)450896 035 $a(OCoLC)979910617 035 $a(DE-B1597)9781400824618 035 $a(Au-PeEL)EBL1781253 035 $a(CaPaEBR)ebr10929483 035 $a(CaONFJC)MIL642940 035 $a(OCoLC)890530787 035 $a(DE-B1597)453496 035 $a(OCoLC)979750447 035 $a(DE-B1597)9781400865314 035 $a(MiAaPQ)EBC1781253 035 $a(dli)HEB09056 035 $a(MiU)MIU01000000000000011662295 035 $a(EXLCZ)991000000000756277 100 $a20140919h20042004 uy 0 101 0 $aeng 135 $aur|||||||nn|n 181 $ctxt 182 $cc 183 $acr 200 10$aScience and polity in France $ethe revolutionary and Napoleonic years /$fCharles Coulston Gillispie 205 $aCourse Book 210 1$aPrinceton, New Jersey ;$aOxfordshire, England :$cPrinceton University Press,$d2004. 210 4$d©2004 215 $a1 online resource (763 p.) 300 $aThis volume is: The revolutionary and Napoleonic years. 300 $aOriginally published: Science and polity in France at the end of the Old Regime. Princeton, N.J. : Princeton University Press, c1980. 311 $a0-691-08233-2 320 $aIncludes bibliographical references and index. 327 $tFrontmatter --$tContents --$tPreface --$tA Note on the Citations --$tPart One. Institutions --$tChapter I. The State And Science --$tChapter II. Science and the State --$tPart Two. Professions --$tChapter III. Science and Medicine --$tCHAPTER IV. Scientists and Charlatans --$tPart Three. Applications --$tCHAPTER V. Trades and Agriculture --$tCHAPTER VI. Industry and Invention --$tCHAPTER VII. Engineering, Civil and Military --$tConclusion --$tBibliography --$tIndex 330 $aBy the end of the eighteenth century, the French dominated the world of science. And although science and politics had little to do with each other directly, there were increasingly frequent intersections. This is a study of those transactions between science and state, knowledge and power--on the eve of the French Revolution. Charles Gillispie explores how the links between science and polity in France were related to governmental reform, modernization of the economy, and professionalization of science and engineering. 606 $aScience$zFrance$xHistory 606 $aScience and state$zFrance 615 0$aScience$xHistory. 615 0$aScience and state 676 $a509.44 700 $aGillispie$b Charles Coulston$044100 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910820129103321 996 $aScience and polity in France$92300836 997 $aUNINA LEADER 03802nam 22005055 450 001 9910746081803321 005 20251008142207.0 010 $a3-031-34796-X 024 7 $a10.1007/978-3-031-34796-2 035 $a(MiAaPQ)EBC30745204 035 $a(Au-PeEL)EBL30745204 035 $a(DE-He213)978-3-031-34796-2 035 $a(PPN)272736686 035 $a(CKB)28225228700041 035 $a(EXLCZ)9928225228700041 100 $a20230914d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA Basic Guide to Uniqueness Problems for Evolutionary Differential Equations /$fby Mi-Ho Giga, Yoshikazu Giga 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2023. 215 $a1 online resource (163 pages) 225 1 $aCompact Textbooks in Mathematics,$x2296-455X 311 08$aPrint version: Giga, Mi-Ho A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations Cham : Springer International Publishing AG,c2023 9783031347955 327 $a1 Uniqueness of solutions to initial value problems for ordinary differential equation -- 2 Ordinary differential equations and transport equation -- 3 Uniqueness of solutions to initial value problems for a scalar conversation law -- 4 Hamilton-Jacobi equations -- 5 Appendix: Basic terminology. 330 $aThis book addresses the issue of uniqueness of a solution to a problem ? a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon. This book is intended to be a short introduction to uniqueness questions for initial value problems. One often weakens the notion of a solution to include non-differentiable solutions. Such a solution is called a weak solution. It is easier to find a weak solution, but it is more difficult to establish its uniqueness. This book examines three very fundamental equations: ordinary differential equations, scalar conservation laws, and Hamilton-Jacobi equations. Starting from the standard Gronwall inequality, this book discusses less regular ordinary differential equations. It includes an introduction of advanced topics like the theory of maximal monotone operators as well as what is called DiPerna-Lions theory, which is still an active research area. For conservation laws, the uniqueness of entropy solution, a special (discontinuous) weak solution is explained. For Hamilton-Jacobi equations, several uniqueness results are established for a viscosity solution, a kind of a non-differentiable weak solution. The uniqueness of discontinuous viscosity solution is also discussed. A detailed proof is given for each uniqueness statement. The reader is expected to learn various fundamental ideas and techniques in mathematical analysis for partial differential equations by establishing uniqueness. No prerequisite other than simple calculus and linear algebra is necessary. For the reader?s convenience, a list of basic terminology is given at the end of this book. 410 0$aCompact Textbooks in Mathematics,$x2296-455X 606 $aDifferential equations 606 $aDifferential Equations 615 0$aDifferential equations. 615 14$aDifferential Equations. 676 $a515.35 676 $a515.353 700 $aGiga$b Mi-Ho$0508456 701 $aGiga$b Yoshikazu$0499915 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910746081803321 996 $aBasic Guide to Uniqueness Problems for Evolutionary Differential Equations$94168229 997 $aUNINA