LEADER 01706nam 2200409 450 001 9910715218303321 005 20210201133001.0 035 $a(CKB)5470000002509845 035 $a(OCoLC)1235814013 035 $a(EXLCZ)995470000002509845 100 $a20210201d2014 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aClimate change scenario planning for northwest Alaska parks$iCape Krusenstern and Bering Land Bridge /$fRobert Winfree [and eight others.] 210 1$aFort Collins, Colorado :$cU.S. Department of the Interior, National Park Service, Natural Resource Stewardship and Science,$d2014. 215 $a1 online resource (ix, 70 pages) $ccolor illustrations, color maps 225 1 $aNatural resource report ;$vNPS/AKSO/NRR--2014/830 300 $a"NPS 183/125248, 182/125248, July 2014"--Page ii. 300 $a"Experience your America"--Page 4 of cover. 320 $aIncludes bibliographical references. 606 $aClimatic changes$zAlaska$zCape Krusenstern National Monument 606 $aClimatic changes$zAlaska$zBering Land Bridge National Preserve 607 $aCape Krusenstern National Monument (Alaska) 607 $aBering Land Bridge National Preserve (Alaska) 615 0$aClimatic changes 615 0$aClimatic changes 700 $aWinfree$b Robert$01396400 712 02$aUnited States.$bNational Park Service.$bNatural Resource Stewardship and Science, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910715218303321 996 $aClimate change scenario planning for northwest Alaska parks$93456445 997 $aUNINA LEADER 03627nam 2200649 a 450 001 9910438120603321 005 20200520144314.0 010 $a1-283-84954-2 010 $a3-642-32093-7 024 7 $a10.1007/978-3-642-32093-4 035 $a(CKB)2670000000279876 035 $a(EBL)1030210 035 $a(OCoLC)820204661 035 $a(SSID)ssj0000797462 035 $a(PQKBManifestationID)11425149 035 $a(PQKBTitleCode)TC0000797462 035 $a(PQKBWorkID)10805112 035 $a(PQKB)10226539 035 $a(DE-He213)978-3-642-32093-4 035 $a(MiAaPQ)EBC1030210 035 $a(PPN)168320975 035 $a(EXLCZ)992670000000279876 100 $a20121126d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSolar and stellar dynamos /$fPaul Charbonneau 205 $a1st ed. 2013. 210 $aBerlin $cSpringer$d2013 215 $a1 online resource (245 p.) 225 1 $aSaas-Fee advanced course,$x1861-7980 ;$v39 300 $aDescription based upon print version of record. 311 $a3-642-43047-3 311 $a3-642-32092-9 320 $aIncludes bibliographical references and index. 327 $a1 Magnetohydrodynamics -- 2 Decay and Amplification of Magnetic Fields -- 3 Dynamo Models of the Solar Cycle -- 4 Fluctuations, Intermittency and Predictivity -- 5 Stellar Dynamos -- A Useful Identities and Theorems from Vector Calculus -- B Coordinate Systems and the Fluid Equations -- C Physical and Astronomical Constants -- D Maxwell?s Equations and Physical Units -- Index. 330 $aAstrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in understanding stellar magnetic fields and their evolution in terms of various dynamo models, global MHD simulations, and fossil fields. Each chapter is accompanied by an annotated bibliography, guiding the readers to the relevant technical literature, which may lead them to carry out their own research in the field of dynamo theory. 410 0$aSaas-Fee advanced course ... lecture notes ;$v39. 606 $aStars$xMagnetic fields 606 $aSolar oscillations 606 $aStellar oscillations 607 $aSun 615 0$aStars$xMagnetic fields. 615 0$aSolar oscillations. 615 0$aStellar oscillations. 676 $a538.72 700 $aCharbonneau$b Paul$0943541 712 02$aSchweizerische Gesellschaft fu?r Astrophysik und Astronomie. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438120603321 996 $aSolar and Stellar Dynamos$92129460 997 $aUNINA LEADER 03893nam 2201117z- 450 001 9910669803203321 005 20210501 035 $a(CKB)5400000000044012 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68481 035 $a(oapen)doab68481 035 $a(EXLCZ)995400000000044012 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPartial Differential Equations in Ecology$e80 Years and Counting 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (238 p.) 311 08$a3-0365-0296-3 311 08$a3-0365-0297-1 330 $aPartial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots. 517 $aPartial Differential Equations in Ecology 606 $aMathematics & science$2bicssc 606 $aResearch & information: general$2bicssc 610 $aAllen-Cahn model 610 $aanimal movement 610 $abistability 610 $aCahn-Hilliard model 610 $acarrying capacity 610 $achemostat model 610 $acontinuum models 610 $acorrelated random walk 610 $across diffusion 610 $adesertification 610 $adiffusion 610 $adispersal 610 $adynamic behaviors 610 $aenergy constraints 610 $aEvolutionary dynamics 610 $afront instabilities 610 $aG-function 610 $ageneralist predator 610 $aghost attractor 610 $ahomoclinic snaking 610 $aindividual based models 610 $ainvasive species 610 $ainvasive species in a river 610 $alinear determinacy 610 $along transients 610 $amovement ecology 610 $amutation 610 $anon-constant positive solution 610 $anonlocal interaction 610 $aoptimal control 610 $apartial differential equation 610 $apartial differential equations 610 $apattern formation 610 $aPearl-Verhulst logistic model 610 $aphenotypic plasticity 610 $aplant populations 610 $apopulation dynamics 610 $apopulation growth 610 $aprey-predator 610 $aPublic Goods 610 $aQuorum Sensing 610 $areaction-diffusion 610 $areaction-diffusion model 610 $aregime shift 610 $asemi-linear parabolic system of equations 610 $asocial dynamics 610 $aspatial ecology 610 $aspatial fluctuation 610 $aspatial heterogeneity 610 $aspatial patterns 610 $aspatiotemporal pattern 610 $aspreading speeds 610 $astage structure 610 $ataxis 610 $atelegrapher's equation 610 $atotal realized asymptotic population abundance 610 $atravelling waves 610 $aTuring instability 610 $aTuring patterns 610 $aTuring-Hopf bifurcation 610 $avegetation pattern formation 610 $awave of protests 615 7$aMathematics & science 615 7$aResearch & information: general 700 $aPetrovskii$b Sergei$4edt$01334185 702 $aPetrovskii$b Sergei$4oth 906 $aBOOK 912 $a9910669803203321 996 $aPartial Differential Equations in Ecology$93044792 997 $aUNINA