LEADER 03124nam 2200565 450 001 9910659479703321 005 20240115163545.0 010 $a9783031219528$b(electronic bk.) 010 $z9783031219511 024 7 $a10.1007/978-3-031-21952-8 035 $a(MiAaPQ)EBC7194579 035 $a(Au-PeEL)EBL7194579 035 $a(CKB)26130490200041 035 $a(DE-He213)978-3-031-21952-8 035 $a(PPN)268204373 035 $a(EXLCZ)9926130490200041 100 $a20230512d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe E. M. Stein lectures on hardy spaces /$fSteven G. Krantz 205 $a1st ed. 2023. 210 1$aCham, Switzerland :$cSpringer Nature Switzerland AG,$d[2023] 210 4$d©2023 215 $a1 online resource (257 pages) 225 1 $aLecture Notes in Mathematics Series 311 08$aPrint version: Krantz, Steven G. The E. M. Stein Lectures on Hardy Spaces Cham : Springer,c2023 9783031219511 320 $aIncludes bibliographical references and index. 327 $aIntroductory material -- More on Hardy Spaces -- Background on H^p Spaces -- Hardy Spaces on D -- Hardy Spaces on R^n -- Developments Since 1974 -- Concluding Remarks -- Bibliography -- Index. 330 $aThe book The E. M. Stein Lectures on Hardy Spaces is based on a graduate course on real variable Hardy spaces which was given by E.M. Stein at Princeton University in the academic year 1973-1974. Stein, along with C. Fefferman and G. Weiss, pioneered this subject area, removing the theory of Hardy spaces from its traditional dependence on complex variables, and to reveal its real-variable underpinnings. This book is based on Steven G. Krantz?s notes from the course given by Stein. The text builds on Fefferman's theorem that BMO is the dual of the Hardy space. Using maximal functions, singular integrals, and related ideas, Stein offers many new characterizations of the Hardy spaces. The result is a rich tapestry of ideas that develops the theory of singular integrals to a new level. The final chapter describes the major developments since 1974. This monograph is of broad interest to graduate students and researchers in mathematical analysis. Prerequisites for the book include a solid understanding of real variable theory and complex variable theory. A basic knowledge of functional analysis would also be useful. 410 0$aLecture notes in mathematics & computer science. 606 $aBounded mean oscillation 606 $aHardy spaces 606 $aEspais de Hardy$2thub 606 $aEspais funcionals$2thub 608 $aLlibres electrònics$2thub 615 0$aBounded mean oscillation. 615 0$aHardy spaces. 615 7$aEspais de Hardy 615 7$aEspais funcionals 676 $a515.9 700 $aKrantz$b Steven G.$f1951-$055961 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910659479703321 996 $aThe E. M. Stein Lectures on Hardy Spaces$93032405 997 $aUNINA