LEADER 07616nam 2200541 450 001 9910647263403321 005 20230417004313.0 010 $a3-8325-5601-X 035 $a(CKB)5580000000509366 035 $a(NjHacI)995580000000509366 035 $a(EXLCZ)995580000000509366 100 $a20230324d2022 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aVirtual Building Acoustics $eAuralization with Contextual and Interactive Features /$fImran Muhammad 210 1$aBerlin, Germany :$cLogos Verlag Berlin GmbH,$d2022. 215 $a1 online resource (314 pages) 327 $aAbstract -- List of Symbols -- List of Figures -- List of Tables -- Annexes -- Chapter 1: Introduction -- 1.1. Background and Related Work -- 1.2. Research Objectives -- 1.3. Content Outline -- Chapter 2: Fundamentals of Building Acoustics -- 2.1. Sound Field in Rooms -- 2.1.1. Direct and Diffuse Field, and Reverberation Distance -- 2.1.2. Incident Sound Power on a Surface -- 2.2. Outdoor Sound Fields -- 2.3. Propagation of Sound in Plates -- 2.3.1. Longitudinal Waves -- 2.3.2. Shear Waves -- 2.3.3. Bending Waves (Flexural Waves) -- 2.3.4. Free Vibration of Plates -- 2.3.5. Loss Factor for Bending Waves: (Internal Energy Losses in -- Materials) -- 2.3.6. Critical frequency -- 2.4. Sound Radiation from Building Elements -- 2.4.1. Radiation Factor (Radiation Efficiency) -- 2.4.2. Sound Radiation from an Infinite Large Plate -- 2.4.3. Sound Radiation from a Finite Plate -- Chapter 3: Airborne Sound Insulation Models -- 3.1. Airborne Transmission (Sound Reduction Index) -- 3.2. Direct Transmission -- 3.2.1. Direct Transmission: Infinite Plate -- ii -- 3.2.1.1. Direct Transmission Characterized by Mass Impedance -- 3.2.1.2. Bending Wave Field: Characterized by Wall Impedance -- 3.2.1.3. Direct Transmission (Angle Dependent) -- 3.2.1.4. Direct Transmission (Diffuse Field) -- 3.2.2. Direct Transmission: Finite Plate -- 3.2.2.1. Davy's Theory -- 3.2.2.1.1. Above the Critical Frequency -- 3.2.2.1.2. Below the Critical Frequency -- 3.2.2.2. Spatial Windowing Technique -- 3.2.2.3. ISO Standard Approach -- 3.3. Flanking Transmission -- 3.3.1. Apparent Sound Reduction Index -- 3.3.2. Flanking Sound Reduction Index -- 3.4. Combining Direct and Flanking Transmissions -- 3.4.1. Bending wave transmission across plate intersections -- 3.4.2. Vibration reduction index -- 3.4.3. Combining Multiple Surfaces -- Chapter 4: Sound Insulation Filters: Auralization -- 4.1. Filters for Adjacent Rooms: Simplified Approach -- 4.2. Filters for Adjacent Rooms: Extended Approach -- 4.2.1. Sound Source Directivity -- 4.2.2. Room Impulse Response Synthesis -- 4.2.3. Sound Field in the Source Room -- 4.2.4. Incident Sound Energy at Wall Surface (Source Room) -- 4.2.5. Sound Transmission -- 4.2.5.1. Direct Sound Transmission -- 4.2.5.2. Flanking Sound Transmission -- 4.2.6. Sound Field in the Receiver Room -- 4.3. Fac?ade Sound Insulation Filters: (Outdoor Scenes) -- 4.3.1. Outdoor Sound Propagation Model -- 4.3.1.1. Reflection Model -- 4.3.2. Filter Design -- 4.4. Filter Rendering -- 4.5. Auralization -- 4.5.1. Source Signals -- 4.5.2. Interpolation -- 4.5.3. Binaural Techniques -- 4.5.4. Signal Presentation for Listening -- 4.5.5. Headphone Equalization -- iii -- Chapter 5: Implementation and Verification -- 5.1. Built Environments (Case Studies) -- 5.2. Evaluation for Adjacent Rooms (Indoor Case) -- 5.2.1. Verification of Level Difference ( ) -- 5.2.2. Comparison with Measurements -- 5.2.2.1. Level Differences -- 5.2.3. Visualization of Sound field -- 5.3. Verification of Fac?ade Sound Insulation -- 5.3.1. Verification of Level Difference ( ) -- 5.3.2. Visualization of Sound Fields (Outdoor Excitation) -- 5.4. Extension to Urban Environments (Outdoor) -- 5.4.1. Verification of Level Difference ( ) -- Chapter 6: Auditory-Visual Virtual Reality Framework -- 6.1. Virtual Building Acoustics (VBA) Framework -- 6.1.1. Architectural Models -- 6.1.2. Virtual Reality Visual Environments -- 6.2. Implementation of VBA -- 6.2.1. Room Acoustics Package -- 6.2.2. Building Acoustics Package -- 6.2.3. Outdoor Sound Propagation Package -- 6.2.4. Geometry Handling Package -- 6.2.5. Transfer Function/Audio Rendering Package -- 6.3. Evaluation of Real-time Performance (VBA) -- 6.3.1. Filter Construction (Initialization) -- 6.3.2. Real-time Filter Rendering and Convolution -- 6.4. Audio-Visual Scenes -- Chapter 7: Perceptual Studies -- 7.1. Cognitive Performance during Background Noise Effects -- 7.1.1. Building Acoustics Model (Adjacent Office) -- 7.1.2. Virtual Reality Environment (VR-Scene) -- 7.1.3. Evaluation of VR environment: Cognitive performance and -- subjective ratings -- 7.1.3.1. Methods -- 7.1.3.2. Results -- 7.1.3.2.1. Performance Measurements -- 7.1.3.2.2. Subjective Ratings -- 7.1.4. Summary -- 7.2. Perception of Passing-by Outdoor Sources -- iv -- 7.2.1. Building Acoustical Model (Fac?ade Sound Insulation) -- 7.2.2. Virtual Reality Environment (VR-Scene) -- 7.2.3. Evaluation of VR environment: Perceptual Localization of -- Moving Outdoor Sources -- 7.2.3.1. Methods -- 7.2.3.2. Results -- Chapter 8: Summary -- Chapter 9: Outlook -- Annexes -- Bibliography -- Curriculum Vitae. 330 $aModern societies have concerns about growing annoyance due to noise in private dwellings and in commercial worksites. People are exposed to the noise from neighbours, adjacent offices and road traffic which causes disturbance in sleep, physical or mental work impairments. Though ISO (International Standards Organization) provides sound insulation guidelines to protect citizens from the noise exposures, these guidelines do not provide an optimal acoustic satisfaction especially for specific sounds, for example a conversation varying in intelligibility. This work addresses the challenges in traditional sound insulation models, filters and auralization techniques, and establishes an interface between psychoacoustic research and building acoustics in audio-visual VR environments. Improvements are made in sound insulation prediction methods, filters construction and rendering techniques for sound insulation auralization. The virtual building acoustic framework (VBA) is developed toward real-time interactive audio-visual technology, to be able to introduce more realism and, hence, contextual features into psychoacoustic experiments. Listening experiments close to real-life situations are carried which showed that the VBA can be used as an alternate to design test paradigms which help to better analyse and interpret the noise impacts in built-up environments situations depending on the actual activities. 517 3 $aVirtual Building Acoustics 606 $aHearing 606 $aPsychoacoustics 606 $aSoundproofing 606 $aNoise$xPsychological aspects 606 $aVirtual reality 606 $aVirtual reality in architecture 606 $aSound 610 0$avirtual building acoustics 610 0$apsychoacoustic experiments 610 0$aacoustics 615 0$aHearing. 615 0$aPsychoacoustics 615 0$aSoundproofing 615 0$aNoise$xPsychological aspects. 615 0$aVirtual reality. 615 0$aVirtual reality in architecture. 615 0$aSound. 676 $a006.8 700 $aMuhammad$b Imran$01348419 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910647263403321 996 $aVirtual Building Acoustics$93085931 997 $aUNINA