LEADER 03958nam 22006135 450 001 9910480812503321 005 20210721223408.0 010 $a0-8147-9942-6 010 $a0-8147-3916-4 024 7 $a10.18574/9780814739167 035 $a(CKB)2670000000155481 035 $a(EBL)865534 035 $a(OCoLC)779828117 035 $a(SSID)ssj0000607215 035 $a(PQKBManifestationID)11370932 035 $a(PQKBTitleCode)TC0000607215 035 $a(PQKBWorkID)10582683 035 $a(PQKB)11720866 035 $a(MiAaPQ)EBC865534 035 $a(OCoLC)794701080 035 $a(MdBmJHUP)muse10759 035 $a(DE-B1597)547270 035 $a(DE-B1597)9780814739167 035 $a(EXLCZ)992670000000155481 100 $a20200723h20082008 fg 0 101 0 $aeng 135 $aurnn#---|un|u 181 $ctxt 182 $cc 183 $acr 200 10$aGlobal TV $eExporting Television and Culture in the World Market /$fDenise D. Bielby, C. Lee Harrington 210 1$aNew York, NY :$cNew York University Press,$d[2008] 210 4$d©2008 215 $a1 online resource (276 p.) 300 $aDescription based upon print version of record. 311 0 $a0-8147-8634-0 311 0 $a0-8147-9941-8 320 $aIncludes bibliographical references (p. 227-251) and index. 327 $tFront matter --$tContents --$tList of Figures and Tables --$tAcknowledgments --$tPreface --$tIntroduction --$t1 The Syndication Market in U.S. Television --$t2 Television in the Global Market --$t3 The (Continued) Relevance of Genre --$t4 Managing Television?s Cultural Properties --$t5 Discourses of Distribution --$tConclusion --$tMethodological Appendix --$tNotes --$tReferences --$tIndex --$tAbout the Authors 330 $aA reporter for the Los Angeles Times once noted that ?I Love Lucy is said to be on the air somewhere in the world 24 hours a day.? That Lucy?s madcap antics can be watched anywhere at any time is thanks to television syndication, a booming global marketplace that imports and exports TV shows. Programs from different countries are packaged, bought, and sold all over the world, under the watch of an industry that is extraordinarily lucrative for major studios and production companies. In Global TV, Denise D. Bielb and C. Lee Harrington seek to understand the machinery of this marketplace, its origins and history, its inner workings, and its product management. In so doing, they are led to explore the cultural significance of this global trade, and to ask how it is so remarkably successful despite the inherent cultural differences between shows and local audiences. How do culture-specific genres like American soap operas and Latin telenovelas so easily cross borders and adapt to new cultural surroundings? Why is The Nanny, whose gum-chewing star is from Queens, New York, a smash in Italy? Importantly, Bielby and Harrington also ask which kinds of shows fail. What is lost in translation? Considering such factors as censorship and other such state-specific policies, what are the inevitable constraints of crossing over? Highly experienced in the field, Bielby and Harrington provide a unique and richly textured look at global television through a cultural lens, one that has an undeniable and complex effect on what shows succeed and which do not on an international scale. 606 $aTelevision programs$xMarketing 606 $aTelevision broadcasting$xSocial aspects 608 $aElectronic books. 615 0$aTelevision programs$xMarketing. 615 0$aTelevision broadcasting$xSocial aspects. 676 $a302.23/45 700 $aBielby$b Denise D.$4aut$4http://id.loc.gov/vocabulary/relators/aut$01033371 702 $aHarrington$b C. Lee$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910480812503321 996 $aGlobal TV$92451876 997 $aUNINA LEADER 09609nam 2200601 450 001 996466554603316 005 20230619185801.0 010 $a3-030-61683-5 035 $a(CKB)4100000011807215 035 $a(MiAaPQ)EBC6531720 035 $a(Au-PeEL)EBL6531720 035 $a(OCoLC)1247660539 035 $a(PPN)254722741 035 $a(EXLCZ)994100000011807215 100 $a20211018d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aMathematical communities in the reconstruction after the Great War 1918-1928 $etrajectories and institutions /$fLaurent Mazliak, Rossana Tazzioli, editors 210 1$aCham, Switzerland :$cBirkha?user,$d[2021] 210 4$d©2021 215 $a1 online resource (xvi, 363 pages) $cillustrations 225 1 $aTrends in the history of science 311 $a3-030-61682-7 320 $aIncludes bibliographical references. 327 $aIntro -- Introduction -- The Roaring Mathematical Twenties 1918-1928 -- References -- Contents -- William Henry Young, an Unconventional President of the International Mathematical Union -- 1 Introduction -- 2 The Troubled Existence of the International Mathematical Union -- 2.1 The Difficult Situation in Which Science Found Itself in the Aftermath of the Great War -- 2.2 Early Resistance to the Exclusion Policy -- 2.3 The International Mathematical Union: A Subordinate Institution -- 2.4 Further International Congresses in the 1920s -- 3 William Henry Young -- 3.1 William Henry Young: The Person -- 3.2 William Henry Young: The Mathematician -- 4 Young's Presidency of the International Mathematical Union -- 5 Conclusions -- References -- The Unione Matematica Italiana and Its Bollettino, 1922-1928. National and International Aspects -- 1 Introduction -- 2 The Foundation of the UMI in the International Context -- 3 What Were the UMI and BUMI Modeled After? -- 4 The UMI on the International Scene: The 1924 ICM in Toronto -- 5 The International Congress of Mathematicians, Bologna 1928 -- 6 UMI's Change in Attitude Towards Fascism -- 7 Conclusions -- Archival Sources -- References -- L'Enseignement Mathe?matique and Its Internationalist Ambitions During the Turmoil of WWI and the 1920s -- 1 Introduction -- 2 International Configuration of the Pre-war Mathematical World as Depicted in L'Enseignement Mathe?matique -- 2.1 Laisant and Fehr: Building an Internationale of Mathematical Educators -- 2.2 The CIEM as Presented in the EM's Chronique Section-A Geographical Representation of the Educational Mathematical World? -- 3 Internationalist Editorial Practices in EM During and in the Immediate Aftermath of the War -- 3.1 EM Covers: Not in Step with the Times? -- 3.2 Maintaining the Journal's Ambition and Bibliographical Bulletin During the War. 327 $a3.3 Maintaining a Chronique Dedicated to the CIEM, or How Directing the (Possibly Virtual) Activity of an International Scientific Organization -- 4 EM's Path in the World of the 1920s -- 4.1 Internationalism in the Mathematical Editorial World of the 1920s, Practical Difficulties and the New Geopolitical Situation -- 4.2 EM and the CIEM: The New Position of International Institutions -- 5 Conclusion -- Archival Sources -- Mathematics and Logic in Polish Encyclopedias Published During the Interwar Period -- 1 Introduction -- 2 Historical Background -- 3 Encyclopedias Published in Interwar Poland -- 4 Mathematics and Logic in Ilustrowana Encyklopedia Trzaski, Everta i Michalskiego -- 5 Mathematics and Logic in the Encyklopedia Powszechna Ultima Thule -- 6 Mathematics and Logic in Wielka Ilustrowana Encyklopedja Powszechna "Gutenberga" -- 7 Mathematics and Logic in S?wiat i Z?ycie: Zarys Encyklopedyczny Wspo??czesnej Wiedzy i Kultury -- 8 Mathematics and Logic in Poradnik Dla Samouko?w -- 9 Conclusion -- References -- From the War Against Errors to Mathematics After the War: Public Discourses on a New Mathematical Dictionary -- 1 Introduction -- 2 Mathematical Dictionaries Before the War -- 2.1 Miller and the Context of the MAA -- 2.2 American Dictionaries and European Innovations -- 2.3 A ``Protest Against Such A Butchery of Their Subject'' -- 2.4 Miller on the Needs of Fledgling American Mathematicians -- 3 During the War: Solidifying Content and Intent -- 3.1 Mathematics as the Tower of Babel -- 3.2 Making Higher Mathematics Accessible -- 3.3 Showcasing Scholarship and Testing Leadership -- 4 Aftermath -- 5 Conclusion -- References -- International Geodesy in the Post-war Period, as Seen by the French Bureau des Longitudes (1917-1922) -- 1 Introduction -- 2 International Geodesy Confederations, a Short History. 327 $a3 Echo of International Geodetic Works Inside the Bureau des Longitudes -- 4 The French Geodetic Commission -- 5 Proposals of a New Post-war Geodetic Grouping (1918-1919) -- 6 Toward the Constitution of an International Union in Geodesy (1920-1921) -- 7 The Congress of Rome (1922) -- 8 Conclusion -- Archival Sources -- "The First Mathematically Serious German School of Applied Mathematics"? -- 1 Introduction, in Particular Ostrowski's View of the Von Mises School -- 2 The Prehistory of the Rise of Applied Mathematics in Berlin -- 3 The First Beginnings of the Institute and Von Mises' Struggle for Its Consolidation During the 1920s -- 4 The Fight Between University- and TH-Mathematicians in Berlin Over the Exam for Applied Mathematics and Controversies Between Hamel and Von Mises -- 5 Conclusions -- Appendix -- References -- The Mathematics of Nonlinear Oscillations in the 1920s: A Decade of Trials and Convergence? Examples of the Work of Nicolai Minorsky -- 1 Introduction -- 2 The Work of Nicolai Minorsky Until 1923 -- 2.1 Who Is Minorsky? -- 2.2 Minorsky and the Stability of Ships -- 2.3 1923: Trial Runs on the USS New Mexico -- 3 Looking for Theories of Nonlinear Oscillations in the 1920s -- 3.1 The Linear Oscillations Paradigm Until 1918 -- 3.2 A Decade of Trials and Analogy? -- 3.3 From Poincare? to Andronov: New Theories from the USSR -- 3.4 A Growing Community? -- 4 Minorsky and the Mathematics of Nonlinear Oscillations -- 5 Conclusion -- References -- From Fundamenta Mathematicae to Studia Mathematica: The Renaissance of Polish mathematics in light of Banach's publications 1919-1940 -- 1 Introduction -- 2 Fundamenta Mathematicae (est. 1920) -- 2.1 Birth of a Mathematical Journal -- 2.2 Banach's Contributions to Fundamenta Mathematicae -- 3 Studia Mathematica (est. 1929) -- 3.1 A Journal Dedicated to Functional Analysis. 327 $a3.2 Banach's Contributions to Studia Mathematica -- 4 Conclusion -- 5 Appendix -- References -- Following Be?la von Kere?kja?rto?. The Journeys of a Hungarian Mathematician in the Post-war World -- 1 Introduction -- 2 The Beginning of Be?la von Kere?kja?rto?'s Career in Hungary -- 2.1 Hungary in the Austro-hungarian Empire at the Turn of the Twentieth Century and After the Great War -- 2.2 A Young Mathematician in a Shaken Hungary -- 2.3 The Faculty of Arts and Sciences of Budapest -- 2.4 The University Ferenc Jo?zsef of Szeged -- 3 Be?la von Kere?kja?rto?'s Time as a Privat Docent at Go?ttingen: Writing Vorlesungen U?ber Topologie -- 3.1 Topology Discoveries at the Turn of the Twentieth Century -- 3.2 Vorlesungen u?ber Topologie -- 4 Contacting Fre?chet at a Turn of His Career: Kere?kja?rto?'s Doorway to ``The Other Side'' -- 4.1 Maurice Fre?chet in Strasbourg in the Aftermath of the Great War -- 4.2 Kere?kja?rto?'s Strategic Letters -- 4.3 The Letter from 8 December 1923 -- 4.4 How Is the Theory of Abstract Spaces Perceived in the Exchanges -- 5 Conclusion -- 6 Appendix : Be?la von Kere?kja?rto?'s Letter to Maurice Fre?chet, 8 December 1923 -- References -- Under the Protection of Alien Wings. Russian Emigrant Mathematiciancs in Interwar France: A General Picture and Two Case Studies of Ervand Kogbetliantz and Vladimir Kosticyn -- 1 Introduction -- 2 A Mathematical Road to Exile -- 2.1 To leave or to stay? A shaky timeline and rare departures -- 2.2 Professional socializing academic networks and mathematics -- 2.3 A typology of Russian mathematicians in exile in Paris -- 3 Ervand Kogbetliantz: The Randomness of a Walk -- 3.1 Early years -- 3.2 In the midst of the turmoil -- 3.3 The beginning of a French career -- 4 Vladimir Kosticyn: The Sorrow of Departure -- 4.1 A product of the Moscow school -- 4.2 On the Soviet stage -- 4.3 The Road to Calvary -- 5 Conclusion. 327 $aFrench Archival sources -- Index. 410 0$aTrends in the history of science. 606 $aReconstruction (1914-1939)$zEurope 606 $aMathematics$zEurope$xHistory 606 $aReconstrucció, 1914-1939$2thub 606 $aHistòria de la matemàtica$2thub 607 $aEuropa$2thub 608 $aLlibres electrònics$2thub 615 0$aReconstruction (1914-1939) 615 0$aMathematics$xHistory. 615 7$aReconstrucció, 1914-1939 615 7$aHistòria de la matemàtica 676 $a510.94 702 $aTazzioli$b Rossana 702 $aMazliak$b Laurent 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466554603316 996 $aMathematical communities in the reconstruction after the Great War 1918-1928$92788710 997 $aUNISA LEADER 04579nam 22004453 450 001 9910647220903321 005 20230317084551.0 035 $a(CKB)5680000000300138 035 $a(MiAaPQ)EBC7192511 035 $a(Au-PeEL)EBL7192511 035 $a(OCoLC)1370497092 035 $a(NjHacI)995680000000300138 035 $a(EXLCZ)995680000000300138 100 $a20230317d2020 uy 0 101 0 $acze 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMetodika práce s t?ídním kolektivem v inkluzivní t?íd? se zam??ením na ?áky s t?lesným posti?ením $eMetodická p?íru?ka 205 $a1st ed. 210 1$aBrno :$cMasaryk University,$d2020. 210 4$d©2020. 215 $a1 online resource (272 pages) 311 08$a80-210-5578-2 327 $aU?VOD 5 -- 1 KLIMA S?KOLY A TRI?DNI? KLIMA. 7 -- 1.1 Klima s?koly - vymezeni pojmu 8 -- 1.2 Za?kladni? rysy pojmu klima s?koly 8 -- 1.3 Typy klimatu s?koly. 9 -- 1.4 Tvurci klimatu s?koly 9 -- 1.5 Co je pozitivni klima 10 -- 1.6 Klima tri?dy. 11 -- 1.7 Faktory ovlivnuji?ci? kvalitu klimatu tri?dy. 13 -- 1.8 Zkouma?ni? s?kolni?ho klimatu 20 -- 2. STRATEGIE OVLIVNOVA?NI? KLIMATU TRI?DY PODLE SPECIFIK A POTREB INTEGROVANE?HO Z?A?KA 23 -- 2.1 Z?a?k se specia?lni?mi vzdela?vaci?mi potrebami - vymezeni? pojmu 2.2 Z?a?k se zdravotni?m postiz?eni?m - z?a?k se zrakovy?m postiz?enim 24-- 2.3 Z?a?k se zdravotni?m postiz?enim - z?a?k se sluchovy?m postiz?enim 24 -- 2.3.1 Ovlivnova?ni? pracovni?ho klimatu (Stredisko rane? pe?ce, Tamtam Praha, 2013) 2.4 Z?a?k se zdravotnim postiz?enim - z?a?k s telesny?m postiz?enim -- 2.5 Z?a?k se zdravotni?m postiz?enim-z?a?k s menta?lni? retardaci. 26 -- 2.6 Z?a?k se zdravotni?m postiz?enim - z?a?k s poruchou autisticke?ho spektra. -- 2.7 Z?a?k se zdravotni?m postiz?eni?m-z?a?k s Aspergerovy?m syndromem -- 2.8 Z?a?k se zdravotni?m postiz?enim-z?a?k s ADHD 36 -- 2.9 Socia?lne znevy?hodneny? z?a?k-z rodinne?ho prostredi? s ni?zky?m sociokulturnim postavenim, ohroz?eny? socia?lne patologicky?mi jevy 37 -- 2.10 Socia?lne znevy?hodneny? z?a?k - s nari?zenou u?stavni? vy?chovou. 41 -- 2.11 Socia?lne znevy?hodneny? z?a?k - v na?hradni? rodinne? pe?ci 43 -- 2.12 Socia?lne znevy?hodneny? z?a?k-z?a?k s odlis?ny?m matersky?m jazykem (OMJ) 45 -- 3. PRI?LEZ?ITOSTI A RIZIKA VZA?JEMNY?CH VZTAHU VE SKUPINE S INTEGROVANY?M Z?A?KEM 51-- 3.1 Vy?voj vztahu ve skupine behem s?kolni? docha?zky. 52 -- 3.2 Na?mety na podporu leps?i?ho socia?lni?ho prijeti integrovany?ch z?a?ku 53 -- 3-3 S?ikana a integrovani z?a?ci. 53 -- 4. AKTIVITY A HRY PRO PODPORU POZITIVNI?HO KLIMATU TRI?DY 57 -- 4.1 Aktivity na podporu komunikace ve tri?de. 58 -- 4.2 Vyucovaci? metody vedouci? ke kriticke?mu mys?leni?.60 -- 4.3 Hry a aktivity na podporu pozitivniho klimatu. 63 -- ZA?VER. 65-- LITERATURA 66-- O AUTORCE. 70. 330 $aMetodicka? publikace je jedni?m z vy?stupu? projektu Kvalitni? inkluzivni? vzde?la?va?ni? z?a?ku? se specia?lni?mi vzde?la?vaci?mi potr?ebami na za?kladni? a str?edni? s?kole. Publikace je zame?r?ena na vy?uku z?a?ka s te?lesny?m postiz?eni?m v inkluzivni? tr?i?de?. Text je c?lene?n do tr?i? kapitol, kdy prvni? je vymezeni?m teoreticky?ch vy?chodisek. Charakterizova?no je zde te?lesne? postiz?eni? s du?razem na mozkovou obrnu spolu s uvedeni?m specifik ci?love? skupiny z?a?ku?. V kapitole je rovne?z? zahrnuto te?ma specia?lne? pedagogicke? diagnostiky. Druha? kapitola se ve?nuje vzde?la?va?ni? z?a?ka s mozkovou obrnou v inkluzivni? tr?i?de?. Tr?eti? kapitola pr?edstavuje vy?sledky vy?zkumne? c?a?sti projektu - z?a?ci se specia?lni?mi vzde?la?vaci?mi potr?ebami s te?lesny?m postiz?eni?m se zame?r?eni?m na mozkovou obrnu. 517 $aMetodika práce s t?ídním kolektivem v inkluzivní t?íd? se zam??ením na ?áky s t?lesným posti?ením 606 $aDisabilities 615 0$aDisabilities. 676 $a362.4 700 $aOpat?ilová$b Dagmar$01222657 701 $aZáme?níková$b Dana$01338922 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910647220903321 996 $aMetodika práce s t?ídním kolektivem v inkluzivní t?íd? se zam??ením na ?áky s t?lesným posti?ením$93059196 997 $aUNINA