LEADER 12690nam 22007575 450 001 9910644261203321 005 20230117042635.0 010 $a3-031-22216-4 024 7 $a10.1007/978-3-031-22216-0 035 $a(MiAaPQ)EBC7179164 035 $a(Au-PeEL)EBL7179164 035 $a(CKB)26020954700041 035 $a(DE-He213)978-3-031-22216-0 035 $a(PPN)267809549 035 $a(EXLCZ)9926020954700041 100 $a20230117d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntelligent Autonomous Systems 17 $eProceedings of the 17th International Conference IAS-17 /$fedited by Ivan Petrovic, Emanuele Menegatti, Ivan Markovi? 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (941 pages) 225 1 $aLecture Notes in Networks and Systems,$x2367-3389 ;$v577 300 $aIncludes index. 311 08$aPrint version: Petrovic, Ivan Intelligent Autonomous Systems 17 Cham : Springer,c2023 9783031222153 327 $aIntro -- Program Committee -- Preface -- Contents -- Collaborative Robots -- Evaluation of Software Solutions for Risk Assessment Focusing on Human-Robot Collaboration -- 1 Introduction -- 2 Risk Assessment -- 3 Study Procedure -- 3.1 Selection of Software Solutions Included in the Study -- 3.2 Study Realization -- 3.3 Definition of Evaluation Criteria -- 3.4 Evaluation System and Weighting -- 4 Evaluation Results -- 4.1 Expert Requirements -- 4.2 Suitability for HRC -- 5 Discussion -- 6 Conclusion -- References -- Goal Inference via Corrective Path Demonstration for Human-Robot Collaboration -- 1 Introduction -- 2 Overview of the Proposed System -- 2.1 Assumed Environment -- 2.2 Flow of the Proposed System -- 3 Learning from Corrective Path Demonstration -- 3.1 Position Samples Generation -- 3.2 Learning Relations with Surrounding Objects Probabilistically -- 4 Goal Inference -- 4.1 Partial Probability Map Calculation -- 4.2 Integration and Goal Inference -- 5 Experiment -- 5.1 Experimental Setting -- 5.2 Result -- 6 Conclusion -- References -- Skeleton-Based Action and Gesture Recognition for Human-Robot Collaboration -- 1 Introduction -- 2 Related Works -- 3 Methods -- 3.1 Pose Estimation -- 3.2 3D Pose Estimation -- 3.3 Action and Gesture Recognition -- 3.4 Ensemble Averaging of the Classifiers Predictions -- 4 IAS-Lab Collaborative HAR Dataset -- 5 Experimental Results -- 5.1 Pre-training on the NTU RGB+D Dataset -- 5.2 Fine-Tuning on the IAS-Lab Collaborative HAR Dataset -- 5.3 Ensemble Results Using Body and Hands Models -- 6 Conclusions -- References -- Benchmarking Variable-Stiffness Grippers -- 1 Introduction -- 2 State of the Art -- 3 Test Description -- 3.1 Adaptation Test -- 3.2 Finger Force Test -- 3.3 Grasp Strength Test -- 3.4 Gripper Payload Test -- 4 Experiments -- 4.1 Variable-Stiffness Gripper (VSGrip). 327 $a4.2 Piston Gripper (PistGrip) -- 4.3 Parallel Gripper (ParGrip) -- 4.4 Stiffness States -- 5 Results and Discussions -- 5.1 Object Grasping Test -- 5.2 Finger Force Test -- 5.3 Grasp Strength Test -- 5.4 Gripper Payload Test -- 6 Conclusions -- References -- Evaluation of Safe Reinforcement Learning with CoMirror Algorithm in a Non-Markovian Reward Problem -- 1 Introduction -- 2 Related Work -- 3 Preliminaries and Problem Setting -- 4 CoMirror Descent Search -- 5 Experiments -- 5.1 Experiment with Non-Markovian Reward and Cost -- 5.2 Result -- 5.3 Discussion -- 6 Conclusion -- References -- Validation of Shared Intelligence Approach for Teleoperating Telepresence Robots Through Inaccurate Interfaces -- 1 Introduction -- 2 Shared Intelligence -- 3 Methods -- 3.1 Participants -- 3.2 User's Interfaces -- 3.3 Telepresence Platform -- 3.4 Experiment -- 4 Results -- 5 Conclusion -- References -- Uncertainty Estimation for Safe Human-Robot Collaboration Using Conservation Measures -- 1 Introduction -- 2 Uncertainty and Safety in HRC -- 3 Methodology -- 3.1 Problem Statement -- 3.2 Classification of Uncertainties -- 3.3 Uncertainty Quantification -- 3.4 Use Case: Human Robot Collaboration -- 4 Experiments -- 4.1 Datasets -- 4.2 Conservation Properties and Type B Uncertainties -- 4.3 Validation, Evaluation and Results -- 4.4 Results -- 4.5 Mapping on Safety Limit -- 4.6 Limitations -- 4.7 Discussion -- 5 Conclusion and Outlook -- References -- Post-facto Misrecognition Filter Based on Resumable Interruptions for Coping with Real World Uncertainty in the Development of Reactive Robotic Behaviors -- 1 Introduction -- 2 Past Work -- 2.1 Control Structures for Reactive Task Definition -- 2.2 Robust Recognition Using Neural Networks and Data Filtering Algorithms -- 2.3 Attaining Zero Resumption Overhead. 327 $a3 Post-facto Misrecognition Filter Based on Resumable Interruptions -- 4 Experiments -- 4.1 Setup -- 4.2 Results -- 5 Conclusions -- References -- Gestural and Touchscreen Interaction for Human-Robot Collaboration: A Comparative Study -- 1 Introduction -- 2 Background -- 3 Design Principles -- 4 Implementation -- 4.1 Graphical User Interface -- 4.2 Input -- 4.3 Logic -- 5 Experiment -- 5.1 Experimental Setup -- 5.2 Description of the Experiment -- 6 Results -- 6.1 Assessment of SLOTH Performance -- 6.2 Analysis of Questionnaires -- 6.3 Time Analysis -- 7 Conclusions -- References -- Development and Evaluation of Fiber Reinforced Modular Soft Actuators and an Individualized Soft Rehabilitation Glove -- 1 Introduction -- 2 Methods -- 2.1 Soft Actuators -- 2.2 Dummy Finger and Hand -- 2.3 Rehabilitation Glove -- 2.4 Characterization of Soft Actuators with the Dummy Finger -- 2.5 Evaluation of Prototype Rehabilitation Glove -- 3 Results -- 3.1 Characterization of Actuators with the Dummy Fingers -- 3.2 Evaluation of Prototype Rehabilitation Glove -- 4 Discussion -- 5 Conclusion -- References -- Navigation -- Minimum Displacement Motion Planning for Movable Obstacles -- 1 Introduction -- 2 Minimum Displacement Motion Planning -- 3 Algorithm for Minimum Displacement Motion Planning -- 3.1 (a) Planning Phase -- 3.2 (b) Refinement Phase -- 3.3 Optimality -- 4 Examples and Applications -- 4.1 Theoretical Examples -- 4.2 Applications -- 5 Related Work -- 6 Conclusion -- References -- Mixed Use of Pontryagin's Principle and the Hamilton-Jacobi-Bellman Equation in Infinite- and Finite-Horizon Constrained Optimal Control -- 1 Introduction -- 2 Preliminaries -- 2.1 Motivations for Using DIDO -- 3 Problem Formulation -- 4 Methodology -- 4.1 Application to State- Constrained Problem -- 4.2 Weak Solutions to HJB -- 5 Solving the Original Problem. 327 $a5.1 Convergence to Original Infinite-Horizon Problem -- 5.2 Approximation of Original Finite-Time Problem -- 6 Example -- 6.1 AUV -- 7 Conclusions and Future Work -- References -- Comparing SONN Types for Efficient Robot Motion Planning in the Configuration Space -- 1 Introduction -- 2 Self-Organizing Neural Networks -- 3 Methodology -- 3.1 Model Selection -- 3.2 Connection Reduction -- 4 Evaluation -- 4.1 Qualitative Analysis -- 4.2 Parameter Setting -- 4.3 Comparison of the Different Models -- 4.4 Path Analysis -- 5 Conclusion -- References -- Physics-Based Motion Planning of a Fruit Harvesting Manipulator for Pushing Obstacles in a Cluttered Environment -- 1 Introduction -- 2 Overview of the System -- 2.1 Work -- 2.2 Robot -- 2.3 System Flow -- 3 Physics-Based Motion Planning -- 3.1 Exploration in the Configuration Space -- 3.2 Physics Simulation -- 3.3 State Validity Check -- 3.4 Motion Selection and Reconstruction -- 4 Consideration of an Evaluation Index -- 5 Evaluation -- 5.1 Method -- 5.2 Conditions -- 5.3 Results -- 6 Conclusion -- References -- A Dynamics-Aware NMPC Method for Robot Navigation Among Moving Obstacles -- 1 Introduction -- 2 Problem Formulation -- 3 The Proposed NMPC Approach -- 4 Collision Avoidance -- 4.1 Preliminaries -- 4.2 Avoidable Collision States -- 4.3 Use of the ACS Condition in the NLP -- 5 Simulations -- 5.1 Static Environments -- 5.2 Dynamic Environments -- 6 Conclusion -- References -- Benchmark of Sampling-Based Optimizing Planners for Outdoor Robot Navigation -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Evaluation Metrics -- 3.2 Evaluation Methodology -- 4 Experiments -- 4.1 Scenarios and Evaluation Setup -- 4.2 Interpreting Results Metric-Wise -- 4.3 Combining the Metrics for Absolute Ranking -- 5 Conclusion -- References. 327 $a3D Traversability Analysis in Forest Environments Based on Mechanical Effort -- 1 Introduction -- 2 System Architecture -- 3 Experimental Evaluation -- 4 Results and Discussion -- 5 Conclusion -- References -- Two-step Planning of Dynamic UAV Trajectories Using Iterative -Spaces -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 -Space Definition -- 3.2 Iterative -Spaces -- 3.3 Application to UAV Trajectory Planning -- 4 Evaluation -- 5 Conclusion -- References -- End-to-End Path Estimation and Automatic Dataset Generation for Robot Navigation in Plant-Rich Environments -- 1 Introduction -- 2 Related Work -- 2.1 Traversable Region and Path Detection -- 2.2 Automatic Data Annotation -- 3 Overview of the Proposed Method -- 4 Automatic Data Generation by Trajectory Estimation -- 5 Path Estimation -- 6 Robot Control Based on the Estimated Path -- 7 Experiments -- 7.1 Training with the Automatically Generated Dataset -- 7.2 Navigation -- 8 Conclusions and Future Work -- References -- Localization on Indoor Topological Maps-SCAM: Scale-Compatible Adaptive Monte-Carlo Localization -- 1 Introduction -- 2 Background and Related Work -- 3 SCAM: Scale-Compatible Adaptive Monte-Carlo Localization -- 3.1 Prediction -- 3.2 Observation Update -- 4 Experimental Results and Discussion -- 4.1 Experimental Hardware and Set-up -- 4.2 Localization on Hand-Drawn Maps -- 4.3 Consistency Checks of Localization Results -- 4.4 Applicability of SCAM -- 4.5 Increased Initial Pose Error Tolerance -- 5 Conclusion -- References -- Perception -- Hyperspectral 3D Point Cloud Segmentation Using RandLA-Net -- 1 Introduction -- 2 Related Work -- 3 The Hyperspectral Semantic Street Scene Dataset -- 4 Semantic Classification with RandLA-Net -- 4.1 Pre-filtering -- 4.2 RandLA-Net Implementation and Parameterization -- 5 Evaluation -- 6 Conclusion and Outlook -- References. 327 $a3D Semantic Scene Perception Using Distributed Smart Edge Sensors. 330 $a?IAS has been held every two years since 1986 providing venue for the latest accomplishments and innovations in advanced intelligent autonomous systems. New technologies and application domains continuously pose new challenges to be overcome in order to apply intelligent autonomous systems in a reliable and user-independent way in areas ranging from industrial applications to professional service and household domains. The present book contains the papers presented at the 17th International Conference on Intelligent Autonomous Systems (IAS-17), which was held from June 13?16, 2022, in Zagreb, Croatia. In our view, 62 papers, authored by 196 authors from 19 countries, are a testimony to the appeal of the conference considering travel restrictions imposed by the COVID-19 pandemic. Our special thanks go to the authors and the reviewers for their effort?the results of their joint work are visible in this book. We look forward to seeing you at IAS-18 in 2023 in Suwon, South Korea!?. 410 0$aLecture Notes in Networks and Systems,$x2367-3389 ;$v577 606 $aComputational intelligence 606 $aControl engineering 606 $aRobotics 606 $aAutomation 606 $aIndustrial engineering 606 $aProduction engineering 606 $aComputational Intelligence 606 $aControl, Robotics, Automation 606 $aIndustrial and Production Engineering 615 0$aComputational intelligence. 615 0$aControl engineering. 615 0$aRobotics. 615 0$aAutomation. 615 0$aIndustrial engineering. 615 0$aProduction engineering. 615 14$aComputational Intelligence. 615 24$aControl, Robotics, Automation. 615 24$aIndustrial and Production Engineering. 676 $a629.892 676 $a629.89263 702 $aMenegatti$b Emanuele 702 $aMarkovic?$b Ivan 702 $aPetrovic?$b Ivan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910644261203321 996 $aIntelligent Autonomous Systems 17$93266014 997 $aUNINA