LEADER 01486nam1 22002893i 450 001 SUN0123607 005 20190925094845.654 010 $a8-88-6994-196-2$d0.00 100 $a20190925d2019 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $a*Scritti in ricordo di Giovanna Mancini$fa cura di Massimo Basilavecchia e Lucio Parenti 205 $aLecce : Grifo, 2019 210 $a2 volumi$a24 cm 215 $aIn testa al frontespizio: Facoltà di Giurisprudenza, Università degli studi di Teramo. 463 1$1001SUN0123608$12001 $a<<*Scritti in ricordo di Giovanna Mancini>> 1 $fa cura di Massimo Basilavecchia e Lucio Parenti$v1$1205 $aLecce : Grifo, 2019$1210 $aXIII$d538 p. ; 24 cm$1215 $aIn testa al frontespizio: Facoltà di Giurisprudenza, Università degli studi di Teramo. 463 1$1001SUN0123611$12001 $a<<*Scritti in ricordo di Giovanna Mancini>> 2$fa cura di Massimo Basilavecchia e Lucio Parenti$v2$1205 $a Lecce : Grifo, 2019$1210 $a539-1037 p.$a24 cm$1215 $aIn testa al frontespizio: Facoltà di Giurisprudenza, Università degli studi di Teramo. 620 $dLecce$3SUNL000073 702 1$aMancini$b, Giovanna$3SUNV008951 702 1$aBasilavecchia$b, Massimo$3SUNV011053$4340 702 1$aParenti$b, Lucio$3SUNV074845$4340 712 $aGrifo$3SUNV010554$4650 801 $aIT$bSOL$c20190930$gRICA 912 $aSUN0123607 996 $aScritti in ricordo di Giovanna Mancini$91554302 997 $aUNICAMPANIA LEADER 03134nam 22005535 450 001 9910644256003321 005 20251113181656.0 010 $a981-19-8540-5 024 7 $a10.1007/978-981-19-8540-9 035 $a(MiAaPQ)EBC7175626 035 $a(Au-PeEL)EBL7175626 035 $a(CKB)25994458500041 035 $a(DE-He213)978-981-19-8540-9 035 $a(PPN)267807198 035 $a(EXLCZ)9925994458500041 100 $a20230110d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEinstein Constraints and Ricci Flow $eA Geometrical Averaging of Initial Data Sets /$fby Mauro Carfora, Annalisa Marzuoli 205 $a1st ed. 2023. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2023. 215 $a1 online resource (181 pages) 225 1 $aMathematical Physics Studies,$x2352-3905 311 08$aPrint version: Carfora, Mauro Einstein Constraints and Ricci Flow Singapore : Springer,c2023 9789811985393 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Geometric preliminaries -- Ricci ?ow background -- Ricci ?ow conjugation of initial data sets -- Concluding remarks. 330 $aThis book contains a self-consistent treatment of a geometric averaging technique, induced by the Ricci flow, that allows comparing a given (generalized) Einstein initial data set with another distinct Einstein initial data set, both supported on a given closed n-dimensional manifold. This is a case study where two vibrant areas of research in geometric analysis, Ricci flow and Einstein constraints theory, interact in a quite remarkable way. The interaction is of great relevance for applications in relativistic cosmology, allowing a mathematically rigorous approach to the initial data set averaging problem, at least when data sets are given on a closed space-like hypersurface. The book does not assume an a priori knowledge of Ricci flow theory, and considerable space is left for introducing the necessary techniques. These introductory parts gently evolve to a detailed discussion of the more advanced results concerning a Fourier-mode expansion and a sophisticated heat kernel representation of the Ricci flow, both of which are of independent interest in Ricci flow theory. This work is intended for advanced students in mathematical physics and researchers alike. . 410 0$aMathematical Physics Studies,$x2352-3905 606 $aMathematical physics 606 $aGeometry, Differential 606 $aMathematical Physics 606 $aDifferential Geometry 615 0$aMathematical physics. 615 0$aGeometry, Differential. 615 14$aMathematical Physics. 615 24$aDifferential Geometry. 676 $a618 700 $aCarfora$b M$g(Mauro),$052579 702 $aMarzuoli$b A$g(Annalisa), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910644256003321 996 $aEinstein constraints and Ricci flow$93363903 997 $aUNINA