LEADER 01340nam 2200313Ia 450 001 996389276303316 005 20210104171917.0 035 $a(CKB)4940000000094534 035 $a(EEBO)2240862276 035 $a(OCoLC)ocm62369669e 035 $a(OCoLC)62369669 035 $a(EXLCZ)994940000000094534 100 $a20051129d1642 uy 0 101 0 $aeng 135 $aurbn||||a|bb| 200 12$aA true coppy of Mother Shiptons last prophesies$b[electronic resource] $eas they were taken from one Joane Waller in the year of our Lord 1625 who died in March last, 1641 being ninety foure yeares of age of whom Mother Shipton had prophesided that she should live to heare of wars within this kingdome but not to see them, also predicting other wonderfull events that should befall in the clymate in these times, with two other strange prophesies threunto annexed, all which were never published before 210 $aLondon $cPrinted for T. V.$d1642 215 $a[8] p 300 $aReproduction of original in: British Library. 330 $aeebo-0018 606 $aProphecies 615 0$aProphecies. 700 $aShipton$cMother$g(Ursula)$01005752 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a996389276303316 996 $aA true coppy of Mother Shiptons last prophesies$92325263 997 $aUNISA LEADER 10609nam 2200481 450 001 9910643041503321 005 20230224165108.0 010 $a3-527-84076-1 010 $a3-527-84078-8 035 $a(MiAaPQ)EBC7102304 035 $a(Au-PeEL)EBL7102304 035 $a(CKB)24950535300041 035 $a(EXLCZ)9924950535300041 100 $a20230224d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMagnetic nanoparticles $esynthesis, characterization, and applications /$fAbdollah Hajalilou, Mahmoud Tavakoli and Elahe Parvini 210 1$aWiesbaden, Germany :$cWiley,$d[2023] 210 4$d©2023 215 $a1 online resource (347 pages) 311 08$aPrint version: Hajalilou, Abdollah Magnetic Nanoparticles Newark : John Wiley & Sons, Incorporated,c2023 9783527350971 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to Magnetic Materials -- 1.1 Theory and Fundamentals of Magnetization -- 1.2 Type of Magnetism -- 1.2.1 Diamagnetism -- 1.2.2 Paramagnetism -- 1.2.3 Ferromagnetism -- 1.2.4 Antiferromagnetism -- 1.2.5 Ferrimagnetism -- 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials -- 1.3.1 Intrinsic Properties -- 1.3.1.1 Saturation Magnetization (Ms) -- 1.3.1.2 Curie Temperature (TC) -- 1.3.1.3 Magnetic Anisotropy -- 1.3.2 Extrinsic Properties -- References -- Chapter 2 Type and Characteristics of Magnetic Materials -- 2.1 Introduction -- 2.2 Soft and Hard Magnetic Materials -- 2.2.1 Soft Magnetic Materials -- 2.2.2 Hard Magnetic Materials -- 2.3 Hysteresis Loop -- 2.3.1 The Process of Hysteresis Loop Formation -- 2.3.2 Domain Orientation in Directions Favorable to the Applied Field -- 2.4 Magnetic Characteristic Measurements -- 2.4.1 M-H Hysteresis Loop -- 2.4.2 B-H Hysteresis Loop -- 2.5 Magnetic Losses -- 2.5.1 Eddy Current Losses -- 2.5.2 Residual Losses -- 2.5.3 Hysteresis Losses -- References -- Chapter 3 Insight into the Synthesis of Nanostructured Magnetic Materials -- 3.1 Introduction -- 3.2 Synthesis Process of the Magnetic Nanoparticles -- 3.3 Importance of the Synthesis and/or Preparation Methods -- 3.4 Dependency of Particle Size and Shape on Synthesize Route -- 3.5 Questions Related to the Selected Synthesis Route -- 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size -- 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape -- 3.8 Introduction to Wet?Chemical Synthesis Route -- 3.8.1 Microemulsion -- 3.8.2 Hydrothermal Method -- 3.8.3 Co?precipitation -- 3.8.4 Sonochemical -- 3.8.5 Sol-Gel Method -- 3.8.6 Thermal Decomposition -- 3.8.7 Solvothermal -- 3.8.8 Microwave?Assisted Route -- 3.8.9 Green?Assisted Synthesis Route. 327 $a3.9 Introduction to Solid?State Routes to Synthesize Magnetic Nanoparticles -- 3.9.1 A Standard Ceramic Route -- 3.9.2 Mechanical Alloying (MA) Process -- 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes -- 3.10.1 Magnetic Separation Technique (MST) -- 3.10.2 Curie Temperature Separation Technique -- 3.10.3 Oxidation of Wuestite -- References -- Chapter 4 Parallel Evolution of Microstructure?Magnetic Properties Relationship in Nanostructured Ferrites -- 4.1 Introduction -- 4.2 Insights into a Sintering Phenomenon -- 4.2.1 Magnetism?Microstructure Parallel Evolution in Yttrium Iron Garnet -- 4.2.2 Magnetism?Microstructure Parallel Evolution in Hard Ferrites -- 4.2.3 Magnetism?Microstructure Parallel Evolution in Soft Ferrites -- 4.3 Soaking or Sintering Time -- 4.4 Heating Rate -- 4.5 Trends of Sintering: Single?Sample and Multi?Sample Sintering -- 4.6 Conclusion and Perspective Outlook -- References -- Chapter 5 Surface Modification of Magnetic Nanoparticles -- 5.1 Introduction -- 5.2 Employed Technical Resources for Surface Modification -- 5.2.1 Plasma Treatment -- 5.2.2 Corona Discharge -- 5.2.3 Parylene Coating -- 5.2.4 Photolysis -- 5.2.5 Other Methods and Examples -- 5.3 Surface Modification of Magnetic Nanoparticles with Surfactant -- 5.4 Current Trends for Surface Modification of Nanomaterials -- 5.4.1 Chemical Functionalization -- 5.4.2 Physical Functionalization -- 5.5 Surface Modification Based on Organic Reactions -- 5.6 Surface Modification Based on Polymerization -- 5.7 Surface Modification with Inorganic Layers -- 5.8 Summary -- References -- Chapter 6 Insight into Superconducting Quantum Interference Devices (SQUID) -- 6.1 Introduction to SQUID -- 6.1.1 A Radio Frequency (RF) SQUID -- 6.1.2 A Direct Current (DC) SQUID -- 6.2 Superconducting Materials Used in SQUID. 327 $a6.3 What Is the Basic Principle in SQUID VSM Magnetometer? -- 6.4 Superconductivity -- 6.4.1 Electron-Lattice Interaction -- 6.4.2 Cooper Pairs -- 6.4.3 Energy Gap -- 6.4.4 Coherence -- 6.4.5 Flux Quantization -- 6.5 Josephson Tunneling (JT) Phenomenon -- 6.6 Utilizations and Applications of SQUID -- 6.7 Advantage and Disadvantage of SQUID Compared to Other Techniques in Characterization of Magnetic Nanomaterials -- References -- Chapter 7 The Principle of SQUID Magnetometry and Its Contribution in MNPs Evaluation -- 7.1 Introduction -- 7.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study -- 7.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other -- 7.4 Types of Information Obtained from the ZFC and FC Curves -- 7.4.1 Blocking Temperature -- 7.4.2 Néel Temperature -- 7.4.3 Types of Magnetism -- 7.4.4 Spin Glass (SG) and Superparamagnetic (SPM) -- 7.5 SQUID Magnetometry: Magnetic Measurements -- 7.5.1 Magnetization Versus Temperature, M(T) -- 7.5.1.1 Blocking Temperature (TB) as a Function of Particle Size Distribution -- 7.5.1.2 Dependency of Blocking Temperature (TB) on the Volume of Particles -- 7.5.1.3 The Field Dependence of the Blocking Temperature -- 7.5.1.4 The Blocking Temperature (TB) Versus Applied Pressure, and Density -- 7.5.1.5 Effect of Heat Treatment on Blocking Temperature -- 7.5.2 Magnetization as a Function of Applied Magnetic Field -- References -- Chapter 8 Type of Interactions in Magnetic Nanoparticles -- 8.1 Introduction -- 8.2 Magnetic Dipole-Dipole Interaction Between Magnetic Nanoparticles -- 8.3 Exchange Interaction -- 8.3.1 Direct Exchange Interaction -- 8.3.2 Indirect Exchange Interaction -- 8.4 Super?Exchange Interaction -- 8.5 Dipolar Interactions -- 8.6 Spin-Orbit Interaction -- References. 327 $aChapter 9 Insight into AC Susceptibility Measurements in Nanostructured Magnetic Materials -- 9.1 Introduction -- 9.2 AC Susceptibility Measurement -- 9.3 AC Susceptibility as a Probe of Magnetic Dynamics in a Wide Variety of Systems -- 9.3.1 AC Susceptibility as a Probe of Low?Frequency Magnetic Dynamics -- 9.3.2 AC Susceptibility as a Probe of High?Frequency Magnetic Dynamics -- 9.4 Information Obtained from Susceptibility Measurements -- 9.5 Insight into the Interaction Between Magnetic Nanoparticles and Used Models -- 9.5.1 Néel-Brown Model -- 9.5.2 Vogel-Fulcher Model -- 9.5.3 Conventional Critical Slowing Down Model -- 9.5.4 Power Law (P?L) Model -- 9.6 Examples of Evaluation of AC Susceptibility in MNPs -- 9.7 Using AC Susceptibility Measurements to Probe Transitions in Colloidal Suspensions -- References -- Chapter 10 Induced Effects in Nanostructured Magnetic Materials -- 10.1 Introduction -- 10.2 The Spin?Canted Effect -- 10.3 Spin?Glass?Like Behavior in Magnetic Nanoparticles -- 10.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles -- 10.5 Finite Size Effects on Magnetic Properties -- 10.6 Surface Effect in Nanosized Particles -- 10.7 Memory Effect -- References -- Chapter 11 Insight into Superparamagnetism in Magnetic Nanoparticles -- 11.1 Introduction -- 11.2 Description of Superparamagnetism Based on Size of Particles and Magnetic Measurements -- 11.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H) -- 11.4 SPM Detection Based on ZFC and FC Magnetization Curves -- References -- Chapter 12 Mössbauer Spectroscopy -- 12.1 Introduction to Mössbauer Spectroscopy -- 12.2 Observed Effects in Mössbauer -- 12.2.1 Mössbauer Effect -- 12.2.2 Recoil Effect -- 12.2.3 Doppler Effect -- 12.3 Hyperfine Interactions -- 12.3.1 Electric Monopole Interaction. 327 $a12.3.1.1 S?Electron Density (Indirectly p and d?Electron Density) -- 12.3.1.2 Dependency of Isomer Shift on Spin State -- 12.3.1.3 Dependency of Isomer Shift on Strong Field Ligands -- 12.3.1.4 Dependency of Isomer Shift on Electronegativity of Ligands -- 12.3.2 Electric Quadrupole Interaction (Quadrupole Splitting) -- 12.3.3 Magnetic Dipole Interaction (Magnetic Splitting) -- 12.4 Mössbauer Spectroscopy Applied to Magnetism -- 12.4.1 Superparamagnetic Characterization -- 12.4.2 Mössbauer Spectroscopy Applied to Characterize the Effect of Synthesis Method on the MNPs Behavior -- 12.5 Phase Formation Evaluation Through Mössbauer Spectroscopy -- 12.6 Chemical Composition Evaluation Based on the Mössbauer Spectroscopy Spectra -- References -- Chapter 13 Application of Magnetic Nanoparticles -- 13.1 Introduction -- 13.2 Magnetic Nanoparticles: Application in Engineering -- 13.2.1 Mechanical and Materials Engineering: Magnetic Nanoparticles in Magnetorheological Fluids (MRF) -- 13.2.2 Environmental Engineering: Magnetic Nanoparticles in Wastewater Treatment -- 13.2.3 Surface Engineering -- 13.2.4 Tissue Engineering (TE) -- 13.3 Magnetic Nanoparticle Application in Energy -- 13.3.1 Supercapacitors and Batteries -- 13.3.2 Solar Cells -- 13.4 Magnetic Nanoparticles Application in Medical Science -- 13.4.1 Magnetic Resonance Imaging (MRI) -- 13.4.2 Drug Delivery -- 13.4.3 An Introduction to Hyperthermia (Therapy) in Cancer Treatment (Methods, Mechanisms, Constraints, and Role of Nanotechnology) -- 13.4.3.1 Magnetic Loss Processes Contributed to Magnetic Heating -- 13.4.3.2 Challenges of Magnetic Hyperthermia for Therapeutic Uses -- 13.5 Other General Applications of Magnetic Nanoparticles -- References -- Index -- EULA. 606 $aMagnetic nanoparticles 615 0$aMagnetic nanoparticles. 676 $a610.28 700 $aHajalilou$b Abdollah$01059280 702 $aTavakoli$b Mahmoud 702 $aParvini$b Elahe 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910643041503321 996 $aMagnetic nanoparticles$93020048 997 $aUNINA