LEADER 06737nam 2201837z- 450 001 9910639986603321 005 20240911075446.0 010 $a3-0365-6053-X 035 $a(CKB)5470000001633488 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/95887 035 $a(EXLCZ)995470000001633488 100 $a20202301d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnhanced Geothermal Systems and other Deep Geothermal Applications throughout Europe: The MEET Project 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (544 p.) 311 $a3-0365-6054-8 330 $aThe MEET Special Issue aims at showing the gains in geothermal energy that can be achieved using a variety of techniques, depending on the geological setting of the underground. Among the list of exploitation concepts, enhanced geothermal systems (EGS) are particularly interesting, as their application is much less dependent of the underground setting, allowing, in turn, a large geographical deployment and market penetration in Europe. The challenges of EGS are multiple in terms of investment costs, the testing of novel reservoir exploitation approaches with an inherent risk of induced seismicity, and the presence of aggressive geothermal brines, damaging infrastructures. The conversion of oil wells or coproduction of heat or electricity together with oil is also addressed. This Special Issue summarizes the output of the H2020 MEET project based on laboratory experiments, geological field works on high-quality analogues, advanced reservoir modeling, the development of a decision-maker tool for investors and specific demonstration activities, such as chemical stimulation or the innovative monitoring of deep geothermal wells, and the production of electrical power via small-scale binary technology tested in various geological contexts in Europe. 517 $aEnhanced Geothermal Systems and other Deep Geothermal Applications throughout Europe 606 $aResearch & information: general$2bicssc 607 $aIwantja / Indulkana / Granite Downs (SA Central Australia SG53-09)$2aiatsisp 610 $aSoultz-Sous-Fore?ts 610 $ageothermal site 610 $aheat exchanger 610 $ascales 610 $asulfates 610 $asulfides 610 $aAs and Sb-bearing galena 610 $acrystal growth 610 $acrystal shapes 610 $afracture network 610 $aDeath Valley 610 $aNoble Hills 610 $apower law distribution 610 $amultiscale analysis 610 $ageothermal reservoir characterization 610 $aNoble Hills granite 610 $aOwlshead Mountains granite 610 $ametamorphic grade 610 $afluid/rock interactions 610 $anewly formed minerals 610 $aelement variations 610 $ageothermal reservoir 610 $adeep geothermal energy 610 $aEGS 610 $aVariscan fold-and-thrust belt 610 $adistrict heating and cooling 610 $aeconomic indicators 610 $aCO2 abatement cost 610 $asensitivity analysis 610 $afracturing processes 610 $afluid circulation 610 $agranite alteration 610 $alow to moderate regional strain 610 $ablind geothermal system 610 $acompositional anomalies 610 $ahierarchical clustering 610 $aself-organizing maps 610 $aunconventional reservoirs 610 $ageothermal 610 $aOVSP 610 $awell seismic data 610 $afault 610 $afracture 610 $ageothermal derisking 610 $aFWI 610 $anumerical modelling 610 $ainversion 610 $aimaging 610 $apermeability 610 $afluid-rock interactions 610 $aslate 610 $atemperature 610 $atime-dependent 610 $apressure solution 610 $adissolution 610 $aSoultz-sous-Fore?ts 610 $ahydro-thermal modeling 610 $aconversion 610 $aclustering 610 $aupscaling 610 $aheat 610 $aelectricity 610 $ascenarios 610 $aLCOE 610 $aLCOH 610 $aNPV 610 $aCO2 emissions 610 $aUpper Rhine Graben 610 $ageothermal brine 610 $ascaling 610 $ametal sulfides 610 $athermodynamic 610 $akinetics 610 $aoil 610 $acorrosion 610 $ageology 610 $astress 610 $afluid pressure 610 $aMohr diagrams 610 $afracturing 610 $agreywackes 610 $aslates 610 $adeep geothermal reservoir 610 $astructural model 610 $athermo-hydraulic simulations 610 $aMEET H2020 project 610 $afracture network variability 610 $agranite 610 $aspacing distribution 610 $afracture intensity P10 610 $awell placement 610 $aCO2-EGS 610 $awater-EGS 610 $adiscrete fracture networks 610 $aTHM modeling 610 $aenhanced geothermal systems (EGS) 610 $afractured granite 610 $acore flooding experiments 610 $aautoclave experiments 610 $aCornubian Batholith 610 $aEnhanced Geothermal Systems (EGS) 610 $aVariscan rocks 610 $aquartzite 610 $aclaystone 610 $agraywacke 610 $agouge 610 $afracture transmissivity 610 $aeffective stress 610 $aUnited Downs 610 $ahydraulic stimulation 610 $aequivalent permeability field 610 $aexposed analogue 610 $aenhanced geothermal system 610 $afractures 615 7$aResearch & information: general 700 $aLede?sert$b Be?atrice A$4edt$01278526 702 $aHe?bert$b Ronan L$4edt 702 $aTrullenque$b Ghislain$4edt 702 $aGenter$b Albert$4edt 702 $aDalmais$b Ele?onore$4edt 702 $aHe?risson$b Jean$4edt 702 $aLede?sert$b Be?atrice A$4oth 702 $aHe?bert$b Ronan L$4oth 702 $aTrullenque$b Ghislain$4oth 702 $aGenter$b Albert$4oth 702 $aDalmais$b Ele?onore$4oth 702 $aHe?risson$b Jean$4oth 906 $aBOOK 912 $a9910639986603321 996 $aEnhanced Geothermal Systems and other Deep Geothermal Applications throughout Europe: The MEET Project$93013402 997 $aUNINA