LEADER 01341nam 2200385 450 001 996280931703316 005 20231021000600.0 035 $a(CKB)3460000000125588 035 $a(NjHacI)993460000000125588 035 $a(EXLCZ)993460000000125588 100 $a20231021d2013 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$a2013 Ocean Electronics (SYMPOL) /$fIEEE 210 1$aPiscataway, NJ :$cIEEE,$d2013. 215 $a1 online resource $cillustrations 311 $a1-4799-2905-0 311 $a93-80095-45-7 330 $aAnnotation The purpose of SYMPOL 2013 shall be to advance the understanding and application of acoustics, and other underwater systems in the sensing, communicating, and responding to man made and naturally occurring ocean phenonema. 517 $a2013 Ocean Electronics 517 $aOcean Electronics 606 $aElectronic apparatus and appliances$vCongresses 606 $aOcean engineering$vCongresses 615 0$aElectronic apparatus and appliances 615 0$aOcean engineering 676 $a621.3 801 0$bNjHacI 801 1$bNjHacl 906 $aPROCEEDING 912 $a996280931703316 996 $a2013 Ocean Electronics (SYMPOL)$92506290 997 $aUNISA LEADER 11013nam 2200529 450 001 9910830680703321 005 20230107092544.0 010 $a3-527-82944-X 010 $a3-527-82942-3 035 $a(MiAaPQ)EBC7069538 035 $a(Au-PeEL)EBL7069538 035 $a(CKB)24342142400041 035 $a(EXLCZ)9924342142400041 100 $a20230107d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDevices and systems for laboratory automation /$fKerstin Thurow and Steffen Junginger 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2023] 210 4$d©2023 215 $a1 online resource (513 pages) 311 08$aPrint version: Thurow, Kerstin Devices and Systems for Laboratory Automation Newark : John Wiley & Sons, Incorporated,c2022 9783527348329 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Chapter 1 Introduction -- 1.1 A Short Definition of Laboratory Automation -- 1.2 Short History of Laboratory Automation -- 1.2.1 Early Developments in Laboratory Automation -- 1.2.2 Advances in the Automation of Clinical Laboratories -- 1.2.3 Developments in Pharmaceutical Research -- 1.3 Laboratory Applications and Requirements -- 1.3.1 Bioscreening and Pharmaceutical Testing -- 1.3.1.1 Enzymatic Assays -- 1.3.1.2 Cell?Based Assays -- 1.3.1.3 ELISAs -- 1.3.1.4 DNA/RNA Extraction, Purification, and Quantification -- 1.3.1.5 PCR/RT?PCR/q?PCR -- 1.3.1.6 Gene Expression Analysis -- 1.3.1.7 Next?Generation Sequencing -- 1.3.1.8 Cell Culturing -- 1.3.1.9 Requirements -- 1.3.2 Clinical Applications -- 1.3.2.1 Determination of Classical Parameter -- 1.3.2.2 Determination of Vitamins -- 1.3.2.3 Determination of Drugs of Abuse -- 1.3.2.4 Requirements -- 1.3.3 Classical Analytical Applications -- 1.3.3.1 Food Analysis -- 1.3.3.2 Environmental Analysis -- 1.3.3.3 Requirements -- 1.4 The Goal of this Book -- References -- Chapter 2 Basic Concepts and Principles of Laboratory Automation -- 2.1 The LUO Concept in Laboratory Automation -- 2.1.1 Laboratory Unit Operation Concept -- 2.1.2 Classes of Laboratory Systems and Devices -- 2.1.3 General Automation Strategies in Laboratory Automation -- 2.2 Advantages and Limitations of Laboratory Automation -- 2.2.1 Advantages of Laboratory Automation -- 2.2.2 Limitations of Laboratory Automation -- 2.2.3 Error Handling in Laboratory Automation -- 2.3 Economic Potential of Laboratory Automation -- 2.3.1 Market Dynamics -- 2.3.2 Market Shares by Region -- 2.3.3 Market Shares by Application -- 2.3.4 Market Shares by Users -- 2.3.5 Market Share by Vendors -- References -- Chapter 3 Formats in Laboratory Automation -- 3.1 Formats in Biological Applications. 327 $a3.1.1 Introduction -- 3.1.2 Characteristics of Microplates -- 3.1.3 Lids and Sealing Systems for Microtiter Plates -- 3.1.3.1 Lids -- 3.1.3.2 Foils and Films -- 3.1.3.3 Mats -- 3.1.3.4 RoboLid -- 3.1.3.5 Advantages and Disadvantages of Locking Systems -- 3.1.3.6 Application Areas of Locking Systems -- 3.1.4 Market Potential and Commercially Available Systems -- 3.1.4.1 Microtiter Plates Market -- 3.1.4.2 Market Lids and Sealing Systems -- 3.2 Formats in Clinical Applications -- 3.2.1 Collection of Blood Samples -- 3.2.2 Collection of Urine Samples -- 3.2.3 Collection of Further Examination Material -- 3.3 Formats in Classical Analytical Applications -- 3.4 Automated Handling of Labware -- 3.4.1 Automated Handling of MTP and Covers -- 3.4.1.1 Handling of Microtiter Plates and Lids -- 3.4.1.2 Automated Handling of Foils and Films -- 3.4.2 Automated Handling of Single Samples -- 3.4.2.1 Automated Transport -- 3.4.2.2 Automated Opening/Closing of Single Samples -- References -- Chapter 4 Liquid Handling in Laboratory Automation -- 4.1 Introduction -- 4.1.1 Definition and General Introduction -- 4.1.2 Short History of Liquid Handling -- 4.1.3 Use of Liquid Handling Systems -- 4.2 Liquid Handling Technologies -- 4.2.1 Pipetting Technologies -- 4.2.2 Aspiration Methods -- 4.3 Critical Liquid Handling Parameters and Error Sources in Liquid Handling -- 4.3.1 Important Liquid Handling Parameters -- 4.3.2 Physical Influencing Factors -- 4.3.3 Error Sources in Liquid Handling -- 4.3.4 Liquid Handling Performance Monitoring -- 4.4 Market Potential and Systems -- 4.4.1 Market Potential for Liquid Handling Systems -- 4.4.2 General Channel Configurations -- 4.4.3 Liquid Handling Systems with 1-8 Channels -- 4.4.4 Multichannel Systems -- 4.4.5 Liquid Handling Accessories -- References -- Chapter 5 Low-Volume Liquid Delivery -- 5.1 Introduction. 327 $a5.2 Contact?Based Dispenser Technologies -- 5.2.1 Pin Tools -- 5.2.2 Dispensers with Fixed Tips -- 5.2.3 Dispensers with Disposable Tips -- 5.2.4 Summary -- 5.3 Contactless Dispenser Technologies -- 5.3.1 Displacement Dispensers -- 5.3.1.1 Peristaltic Pumps -- 5.3.1.2 Ceramic Pumps -- 5.3.2 Valve?Based Dispensers -- 5.3.2.1 Solenoid Valve Dispensers -- 5.3.2.2 Piezoelectric Valve?Based Dispensers -- 5.3.3 Capillary Sipper -- 5.3.4 Acoustic Dispensers -- 5.3.5 Summary -- 5.4 Application Areas and Requirements for Low?Volume Dispensing -- 5.4.1 Application Areas for Low?Volume Dispensing -- 5.4.2 Requirements for Low?Volume Dispensing -- 5.5 Overview of Low?Volume Dispensers -- 5.5.1 Positive Displacement Systems -- 5.5.2 Piezoelectric Dispenser -- 5.5.3 Acoustic Dispensers -- 5.5.4 Additional Systems -- References -- Chapter 6 Solid Dispensing -- 6.1 Introduction -- 6.2 Factors Influencing the Dosing of Solids -- 6.2.1 Flow Behavior of Bulk Solids -- 6.2.2 Density of Solids -- 6.2.3 Fluidization of Bulk Materials -- 6.3 Solid?Dispensing Technologies -- 6.3.1 Volumetric Dosing Methods -- 6.3.2 Gravimetric Dosing Methods -- 6.3.3 Dosing Methods in Laboratory Automation -- 6.4 Solid Dispensing Systems -- References -- Chapter 7 Devices for Sample Preparation -- 7.1 Introduction -- 7.2 Automated Heating, Cooling, and Mixing -- 7.2.1 Introduction -- 7.2.2 Automated Heating and Cooling -- 7.2.3 Automated Thermocycler -- 7.2.4 Automated Mixing/Shaking -- 7.2.4.1 Introduction -- 7.2.4.2 Automated Shaking -- 7.2.4.3 Automated Stirring -- 7.2.5 Combined Solutions for Mixing and Temperature Control -- 7.3 Automated Incubation -- 7.3.1 Introduction -- 7.3.2 Important Parameter -- 7.3.3 Incubation Systems in the Laboratory -- 7.3.4 Market Situation -- 7.4 Automated Centrifugation -- 7.4.1 Introduction -- 7.4.2 Requirements -- 7.4.3 Market Situation and Systems. 327 $a7.5 Automated Filtration -- 7.6 Automated Solid Phase Extraction -- 7.6.1 Introduction and Requirements -- 7.6.2 Semiautomated Systems -- 7.6.3 Requirements for Automated SPE Systems -- 7.6.4 Automated Single Sample Processing Systems -- 7.6.5 Automated Parallel Processing Systems with Limited Parallelity -- 7.6.6 High Parallel Systems -- 7.6.7 Labware for Automated Solid Phase Extraction -- 7.7 Automated Sonication -- 7.7.1 Basics and Applications of Ultrasonic Systems -- 7.7.2 Market Situation and Systems -- 7.8 Automated Evaporation -- 7.8.1 Introduction -- 7.8.2 Evaporation Technologies and Application Areas -- 7.8.3 Market Situation -- References -- Chapter 8 Robots in Laboratory Automation -- 8.1 Robots - A Definition -- 8.1.1 Historical Development of Laboratory Robotics -- 8.1.2 Basics and Definitions in Robotics -- 8.1.3 Robotic Configurations -- 8.1.4 Robot Programming -- 8.1.5 Advantages and Disadvantages of Laboratory Robots -- 8.2 Stationary Robots in Laboratory Automation -- 8.2.1 Industrial and Collaborative Robots -- 8.2.2 Market Potential -- 8.2.3 Available Stationary Robot Systems -- 8.3 Mobile Robots -- 8.3.1 Differentiation Between Stationary and Mobile Robots -- 8.3.2 Application Scenarios for Mobile Robots -- 8.3.3 Sensor Systems in Mobile Robotics -- 8.3.4 Market Situation and Available Systems -- 8.4 Gripper Systems -- 8.4.1 Mechanical Gripper -- 8.4.2 Pneumatic Gripper -- 8.4.3 Magnetic Gripper -- 8.4.4 Adaptive Gripper -- 8.4.5 Sensors and Safety Systems in Gripper Systems -- 8.5 Safety Aspects in Laboratory Automation -- References -- Chapter 9 Analytical Measurement Systems -- 9.1 Absorption?Based Methods -- 9.1.1 Introduction -- 9.1.2 Physical Background -- 9.1.3 Application Areas of Absorption Spectroscopy -- 9.2 Fluorescence?Based Methods -- 9.2.1 Introduction -- 9.2.2 Physical Background. 327 $a9.2.3 Application Areas of Fluorescence Spectroscopy -- 9.3 Market Situation and Available Reader Systems -- 9.4 Mass Spectrometric Methods -- 9.4.1 Introduction -- 9.4.2 Physical Background -- 9.4.2.1 Ionization -- 9.4.2.2 Mass Separation Technologies -- 9.4.2.3 Detection Technologies -- 9.4.3 Application Areas of Mass Spectrometric Methods -- 9.4.4 Market Situation and Mass Spectrometry Systems -- References -- Chapter 10 Sample Identification in Laboratory Automation -- 10.1 Introduction -- 10.2 Barcode Technology -- 10.2.1 Barcode Types -- 10.2.2 Barcode Reader Technology -- 10.2.3 Barcodes in Laboratory Automation -- 10.2.4 Market Situation for Barcode Readers -- 10.3 RFID Technology -- 10.3.1 RFID Methods -- 10.3.2 Application Areas and Design of RFID Systems -- 10.3.3 Advantages and Disadvantages of RFID Systems -- 10.3.4 Market Situation -- References -- Chapter 11 Interfaces in Laboratory Automation -- 11.1 Introduction -- 11.2 Analog Interfaces -- 11.3 Digital Interfaces -- 11.3.1 Parallel Interfaces -- 11.3.2 Serial Interfaces -- 11.3.3 Network Interfaces -- 11.4 Standardization in Laboratory Automation -- 11.4.1 Introduction -- 11.4.2 SiLA 2 Standard -- 11.4.3 Advantages of SiLA 2 -- 11.4.4 Disadvantages of SiLA -- 11.4.5 Actual Examples for SiLA Integrations -- References -- Chapter 12 Laboratory Automation Software -- 12.1 Introduction -- 12.2 System Control Software/Process Control Systems -- 12.2.1 Introduction -- 12.2.2 Cellario -- 12.2.3 Green Button Go -- 12.2.4 Momentum -- 12.2.5 OneLab -- 12.2.6 Overlord -- 12.2.7 SAMI EX -- 12.2.8 VWorks -- 12.2.9 Hierarchical Workflow Management System (HWMS) -- 12.2.10 Summary -- 12.3 Laboratory Information Management Systems -- 12.3.1 Introduction -- 12.3.2 Core Functionalities of LIMS -- 12.3.3 LIMS Architectures -- 12.3.4 Factors Influencing the Selection of a LIMS -- 12.3.5 LIMS Vendors. 327 $a12.4 Electronic Laboratory Notebooks. 606 $aLaboratories$xDesign and construction 606 $aMedical instruments and apparatus 606 $aAutomation 615 0$aLaboratories$xDesign and construction. 615 0$aMedical instruments and apparatus. 615 0$aAutomation. 676 $a727.5 700 $aThurow$b Kerstin$f1969-$01604345 702 $aJunginger$b Steffen 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830680703321 996 $aDevices and systems for laboratory automation$93929131 997 $aUNINA LEADER 02061nam 2200529z- 450 001 9910639977703321 005 20231214133255.0 010 $a9781928424031 010 $a1928424031 035 $a(CKB)4100000009513078 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/96042 035 $a(Perlego)3511835 035 $a(EXLCZ)994100000009513078 100 $a20220518d2017 uy | 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aOf the same breath $eIndigenous animal and place names 210 $aBloemfontein$cUJ Press$d2017 215 $a1 electronic resource (381 p.) 311 08$a9781928424024 311 08$a1928424023 330 $aOf the Same Breath opens the door to a better understanding of why and how the animals and places of southern Africa have been given the names they have today. The vast reaches of the information provided in this book have been drawn together to create a veritable cornucopia of answers to the old question of how names originated. In this linguistically thought-provoking book, readers will be guided through the origins of animal names and toponyms, from the coastline of South Africa to the northern border of Namibia, and from the mighty elephant to the humble grasshopper. 606 $aPlace names & gazetteers$2bicssc 606 $aGenealogy, heraldry, names & honours$2bicssc 610 $abird names 610 $aanimal names 610 $aplace names 610 $atoponyms 610 $asouthern Arica 610 $aindigenous languages 610 $aSan 610 $aKhoi 610 $ainsects 610 $ascientific names 610 $aorigens 610 $alanguages 610 $aAfrican 615 7$aPlace names & gazetteers 615 7$aGenealogy, heraldry, names & honours 700 $aMöller$b Lucie A$4auth$01302841 906 $aBOOK 912 $a9910639977703321 996 $aOf the same breath$93026680 997 $aUNINA