LEADER 05112nam 2201345z- 450 001 9910637778803321 005 20231214133245.0 010 $a3-0365-5798-9 035 $a(CKB)5470000001631751 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/94531 035 $a(EXLCZ)995470000001631751 100 $a20202212d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGreen Low-Carbon Technology for Metalliferous Minerals 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (292 p.) 311 $a3-0365-5797-0 330 $aMetalliferous minerals play a central role in the global economy. They will continue to provide the raw materials we need for industrial processes. Significant challenges will likely emerge if the climate-driven green and low-carbon development transition of metalliferous mineral exploitation is not managed responsibly and sustainably. Green low-carbon technology is vital to promote the development of metalliferous mineral resources shifting from extensive and destructive mining to clean and energy-saving mining in future decades. Global mining scientists and engineers have conducted a lot of research in related fields, such as green mining, ecological mining, energy-saving mining, and mining solid waste recycling, and have achieved a great deal of innovative progress and achievements. This Special Issue intends to collect the latest developments in the green low-carbon mining field, written by well-known researchers who have contributed to the innovation of new technologies, process optimization methods, or energy-saving techniques in metalliferous minerals development. 606 $aTechnology: general issues$2bicssc 606 $aHistory of engineering & technology$2bicssc 606 $aMining technology & engineering$2bicssc 610 $ametallurgical slag-based binders 610 $asolidification/stabilisation 610 $aAs(III) 610 $aAs(V) 610 $acalcium hydroxide 610 $asublevel caving 610 $anumerical simulation 610 $aphysical model 610 $astructural parameter 610 $agreen mining 610 $alimestone 610 $ahigh temperature 610 $aconfining pressure 610 $aSHPB 610 $aconstitutive model 610 $aopen-pit mine 610 $aPLAXIS 3D 610 $adynamic load 610 $asafety factor 610 $aacceleration 610 $aparticle sedimentation 610 $afilling mining 610 $adegree of influence 610 $apipeline transportation 610 $asolid waste utilization 610 $atailings 610 $areclamation risk 610 $ahazard identification 610 $acomplex network 610 $ahazard management 610 $adigital mine 610 $amine short-term production planning 610 $ahaulage equipment dispatch plan 610 $aABCA 610 $aNSGA 610 $asettlement velocity measurement 610 $aK-means 610 $atailings backfill 610 $aunsupervised learning 610 $acemented paste backfill 610 $aESEM 610 $apicture processing 610 $afloc networks 610 $apumping agent 610 $afractal dimension 610 $abackfill slurry 610 $astrength of cemented backfill 610 $ainhomogeneity of cemented backfill 610 $acemented tailings backfill 610 $acopper 610 $azinc 610 $arecovery 610 $asulfide concentrate 610 $aartificial microbial community 610 $agranular backfill 610 $abearing characteristics 610 $anumerical model 610 $aparticle size 610 $asurface subsidence 610 $ablasting dust movement 610 $adust concentration 610 $aparticle size distribution 610 $ablasting dust reduction 610 $abackfill 610 $ametal mine 610 $alog-sigmoid 610 $atailings pond 610 $aregional distribution 610 $adam break 610 $aaccident statistics 610 $acausation analysis 610 $abackfilling 610 $aincreasing resistance and reducing pressure 610 $acomputational fluid dynamics 610 $aspiral pipe 610 $astowing gradient 610 $acoal-based solid waste 610 $aorthogonal experiment 610 $astrength development 610 $aregression analysis 610 $aengineering performance 615 7$aTechnology: general issues 615 7$aHistory of engineering & technology 615 7$aMining technology & engineering 700 $aGuo$b Lijie$4edt$01331648 702 $aGuo$b Lijie$4oth 906 $aBOOK 912 $a9910637778803321 996 $aGreen Low-Carbon Technology for Metalliferous Minerals$93040529 997 $aUNINA