LEADER 08084nam 2200493 450 001 9910634045103321 005 20230415184530.0 010 $a9783031205538$b(electronic bk.) 010 $z9783031205521 035 $a(MiAaPQ)EBC7153329 035 $a(Au-PeEL)EBL7153329 035 $a(CKB)25610248400041 035 $a(OCoLC)1354205126 035 $a(EXLCZ)9925610248400041 100 $a20230415d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvancement of metal oxide materials for photocatalytic application $eselected strategies to achieve higher efficiency /$fVitaly Gurylev 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (234 pages) 311 08$aPrint version: Gurylev, Vitaly Advancement of Metal Oxide Materials for Photocatalytic Application Cham : Springer International Publishing AG,c2023 9783031205521 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgment -- About the Book -- Contents -- About the Author -- Part I: Photocatalysis: What Is It? -- Chapter 1: Photocatalysis: Basic Principles -- 1.1 Introduction -- 1.2 Types of Photocatalytic Reactions and Their Mechanisms -- 1.2.1 General Descriptions -- 1.2.2 Photocatalytic Water Treatment -- 1.2.3 Photocatalytic Water Splitting -- 1.2.4 Photocatalytic Conversion of CO2 -- 1.2.5 Photocatalytic Nitrogen Fixation -- 1.3 Metal Oxides Materials for Photocatalysis -- 1.3.1 Brief Overview -- 1.3.2 Binary vs. Ternary Metal Oxides -- 1.3.3 Properties and Characteristics of Metal Oxides -- 1.3.3.1 The Internal Structure -- 1.3.3.2 Optical Properties: Absorption of Visible and UV Lights -- 1.3.3.3 Electronic Properties -- 1.3.3.4 Electrical Properties -- 1.3.3.5 Other Properties -- 1.3.4 Methods and Approaches to Boost the Photoactivity of Metal Oxides -- 1.3.5 Metal Oxides vs. Other Types of Materials: Advantages and Disadvantages -- 1.4 Concluding Remarks -- References -- Part II: Strategies to Improve the Photocatalytic Activity of Metal Oxides -- Chapter 2: Strategy I: Doping -- 2.1 Introduction -- 2.1.1 What Is Doping? -- 2.1.2 Why Need to Make Doping? -- 2.1.3 Challenges of Doping -- 2.1.4 Metal vs. Non-metal Doping: Differences and Similarities -- 2.1.5 Methods to Create Doping: General Descriptions -- 2.2 Selected Examples -- 2.2.1 Doping of TiO2 -- 2.2.1.1 Brief Overview -- 2.2.1.2 Experimental Approaches to Create Doped TiO2 -- 2.2.1.3 Properties and Characteristics of Doped TiO2 -- 2.2.1.4 Photocatalytic and Photoelectrochemical Applications of Doped TiO2 -- 2.2.2 Doping in ZnO -- 2.2.2.1 Brief Overview -- 2.2.2.2 Experimental Approaches to Create Doped ZnO -- 2.2.2.3 Properties and Characteristics of Doped ZnO -- 2.2.2.4 Photocatalytic and Photoelectrochemical Applications of Doped ZnO. 327 $a2.2.3 Doping of Other Binary Oxide Materials -- 2.2.3.1 WO3 -- 2.2.3.2 Fe2O3 -- 2.2.3.3 Ta2O5 -- 2.2.3.4 Nb2O5 -- 2.2.3.5 CuO -- 2.2.3.6 Cu2O -- 2.2.4 Ternary Metal Oxides -- 2.3 Concluding Remarks -- References -- Chapter 3: Strategy II: Utilizing Metal Nanoparticles in the Form of Deposited or Embedded Formations -- 3.1 Introduction -- 3.1.1 Metal Nanoparticles: Why They Are Special? -- 3.1.2 Indirect and Direct Plasmon Photocatalysis -- 3.1.3 Bimetallic Nanoparticles -- 3.1.4 Difference Between Surface Decorated and Embedded Metal Nanoparticles -- 3.1.5 Noble vs. Non-noble Metal Nanoparticles -- 3.2 Fabrication of Metal Nanoparticles and Their Localization on the Surface of Metal Oxides -- 3.2.1 Vapor Synthesis Method -- 3.2.2 Photodeposition Method -- 3.2.3 Chemical Reduction Method -- 3.2.4 Other Methods -- 3.3 Geometrical and Morphological Arrangement of Metal Nanoparticles vs. Properties -- 3.3.1 Size of Metal Nanoparticles -- 3.3.2 The Shape of Metal Nanoparticles -- 3.3.3 Concentration and Loading of Metal Nanoparticles -- 3.4 Why Do the Features of Metal Oxide Support Influence Their Decoration with Metal Nanoparticles? -- 3.5 Metal-Enhanced Oxide Photocatalyst: Properties -- 3.5.1 Optical Properties -- 3.5.2 Interfacial Charge Transfer -- 3.5.3 Other Properties and Features -- 3.6 Photocatalytic and Photoelectrochemical Performances of Metal-Enhanced Oxides -- 3.7 Concluding Remarks -- References -- Chapter 4: Strategy III: Formation of Heterostructures -- 4.1 Heterostructure: What Is It and Why It Is Needed? -- 4.2 Types of Semiconductor-Based Heterojunction -- 4.2.1 Three Main Types of Heterojunctions: Particularities and Examples -- 4.2.2 Z-Scheme -- 4.2.3 S-Scheme -- 4.2.4 P-N Junction -- 4.3 Synthesis Methods to Prepare Heterojunctions -- 4.3.1 Bottom-Up Approaches -- 4.3.2 Top-Down Approaches. 327 $a4.4 Morphological Aspects of Heterojunctions -- 4.4.1 Core-Shell Composition -- 4.4.2 Decoration-Based Heterojunction -- 4.4.3 Heterojunctions in the Powder-Like Form -- 4.5 Properties of Heterojunctions: Improvement and Enhancement -- 4.5.1 Optical Properties -- 4.5.2 Structural Properties -- 4.5.3 Electronic Properties -- 4.5.4 Electrical Properties -- 4.6 Photocatalytic and Photoelectrochemical Applications of Heterojunction -- 4.7 Concluding Remarks -- References -- Chapter 5: Strategy IV: Playing with Morphology and Structure of Metal Oxide Materials -- 5.1 Introduction -- 5.2 Methods to Increase the Photocatalytic Performance of Nanostructured Metal Oxides -- 5.2.1 Playing with Surface Area: Why Dimension Is Important -- 5.2.2 Playing with the Orientation of Crystal Structure -- 5.2.3 Playing with Thermodynamic Phases: A Case of TiO2 -- 5.2.4 Playing with Crystal Structure and Its Quality -- 5.3 Synthesis of Morphology and Structure-Advanced Nanostructured Metal Oxides -- 5.3.1 Classifying Methods -- 5.3.2 0-D Nanostructures: How to Create Them -- 5.3.3 1-D Nanostructures: How to Create Them -- 5.3.4 2-D Nanostructures: How to Create Them -- 5.3.5 3-D Nanostructures: How to Create Them -- 5.4 Selected Example I: Morphological Features -- 5.4.1 Hollow Nanostructures -- 5.4.2 Mesoporous Materials -- 5.4.3 Forestlike or Hierarchical Nanostructures -- 5.5 Selected Example II: Specific Metal Oxides -- 5.5.1 TiO2 -- 5.5.2 ZnO -- 5.6 Photocatalytic and Photoelectrochemical Applications of Metal Oxides with Intentionally Modified Structures and Morphologies -- 5.7 Concluding Remarks -- References -- Chapter 6: Strategy V: Intrinsic Deficiency -- 6.1 Introduction -- 6.2 What You Need to Know About Intrinsic Deficiency: Advantages and Disadvantages -- 6.3 Methods to Create an Intrinsic Deficiency -- 6.3.1 Solution-Based Methods. 327 $a6.3.2 Vapor-Based Methods -- 6.3.3 Thermal Treatments Under Oxygen-Deficient and Oxygen-Rich Atmospheres -- 6.3.4 Bombardment with High-Energy Particles -- 6.3.5 Other Methods -- 6.4 Properties of Metal Oxides Filled with Intrinsic Defects -- 6.4.1 Optical Properties -- 6.4.2 Structural Properties -- 6.4.3 Electronic Properties -- 6.4.4 Electrical Properties -- 6.5 Photocatalytic and Photoelectrochemical Applications of Metal Oxides Filled with Intrinsic Defects -- 6.6 Concluding Remarks -- References -- Chapter 7: Strategies to Improve Photocatalytic Performance of Metal Oxides: Future Perspectives -- 7.1 Which Strategy Is Going to Become Dominated Choice in the Future? -- 7.2 Development of New and Alternative Strategies: Perspectives and Dreams -- References -- Index. 606 $aMetallic oxides$xProperties 606 $aPhotocatalysis. 606 $aPhotoelectrochemistry. 615 0$aMetallic oxides$xProperties. 615 0$aPhotocatalysis. . 615 0$aPhotoelectrochemistry. . 676 $a546.721 700 $aGurylev$b Vitaly$01073331 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910634045103321 996 $aAdvancement of Metal Oxide Materials for Photocatalytic Application$92996418 997 $aUNINA