LEADER 05612nam 2200505 450 001 9910633936703321 005 20230415044557.0 010 $a3-658-38111-6 035 $a(MiAaPQ)EBC7150342 035 $a(Au-PeEL)EBL7150342 035 $a(CKB)25504301600041 035 $a(PPN)266354645 035 $a(EXLCZ)9925504301600041 100 $a20230415d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSector coupling - energy-sustainable economy of the future $efundamentals, model and planning example of a total energy system (GES) /$fPrzemyslaw Komarnicki, Michael Kranhold, Zbigniew A. Styczynski 210 1$aWiesbaden, Germany :$cSpringer,$d[2023] 210 4$dİ2023 215 $a1 online resource (221 pages) 311 08$aPrint version: Komarnicki, Przemyslaw Sector Coupling - Energy-Sustainable Economy of the Future Wiesbaden : Springer Fachmedien Wiesbaden GmbH,c2022 9783658381103 320 $aIncludes bibliographical references. 327 $aIntro -- Foreword -- Preface -- Contents -- Abbreviations -- 1: Introduction: Climate Policy Goals of Sustainable Energy Supply -- 1.1 Why Do We Need a General Energy System (GES)? -- 1.1.1 World Population, Energy Resources and the ``Full World´´ -- 1.1.2 Energy Consumption and CO2 Emissions: From Kyoto Protocol to Paris Agreement to Green Deal -- 1.1.3 Sector Coupling: What Is It? -- 1.1.3.1 Introduction -- 1.1.3.2 Example Germany -- 1.2 Paradigm Shift in Electrical Energy Supply Due to Regenerative Generation -- 1.2.1 Power, Energy and Efficiency -- 1.2.2 Potentials of Renewable Generation -- 1.2.3 Dunkelflaute and Other Special Features -- 1.2.3.1 General Comments -- 1.2.3.2 Dunkelflaute -- 1.2.3.3 Frequency Maintenance: System Inertia. Can the Electric Power System Remain Stable Without Inertia? [42] -- 1.2.3.4 Offshore Wind and Green Power from Africa -- References -- 2: Methodology and Model Design for Sector Coupling in the General Energy System (GES) -- 2.1 Modelling of a GES -- 2.1.1 Energy Hub Model -- 2.1.2 Temporal Resolution of Energy Flows -- 2.1.3 Substitution of Energy Sources -- 2.2 Optimisation of a GES -- 2.2.1 General Comments -- 2.2.2 Approaches to System Optimisation -- 2.2.2.1 Scenario-Based Optimization -- 2.2.3 Dynamic Programming According to Bellmann -- 2.2.3.1 Optimization by Means of Linear Programming -- References -- 3: Energy Use Sectors and Their Energy Consumption -- 3.1 General Remarks -- 3.2 Energy Supply (Gas, Electricity, Heat) and the Role of Hydrogen (H2) -- 3.3 Industry: Net Zero Factory -- 3.4 Households -- 3.5 Transport: Electric Mobility -- 3.6 Trade: Commerce - Services (GHD) -- References -- 4: Methodology of Modelling the Energy Hub Components -- 4.1 Introduction -- 4.2 Methodology for Modelling Generation Sectors -- 4.2.1 Electricity -- 4.2.1.1 Introduction. 327 $a4.2.1.2 Modelling of Electricity Network Infrastructures -- 4.2.1.3 Simulation and Network Calculation Tool -- 4.2.2 Gas -- 4.2.2.1 Introduction -- 4.2.2.2 Modelling of Gas Network Infrastructures -- 4.2.2.3 Simulation and Software Tools -- 4.2.3 Heat -- 4.2.3.1 Introduction -- 4.2.3.2 Modelling of Heat Network Infrastructures -- 4.2.3.3 Simulation and Software Tools -- 4.2.4 Energy Market Design, Market Roles -- References -- 5: Flexibility of a General Energy System (GES) -- 5.1 Safe Operation of the General Energy System (GES) -- 5.2 Energy Storage -- 5.3 Evaluation of Flexibility -- 5.3.1 Introduction -- 5.3.2 Flexgraphs -- 5.3.3 Buffer Characteristics -- 5.3.4 Variable and Fixed Power Profiles -- 5.3.5 15-min Energy Values -- 5.4 Legal Framework -- 5.4.1 Introduction -- 5.4.2 Disconnectable Loads -- 5.4.3 Interruptible Consumption Units -- 5.4.4 Future Flexibility, System-Side Needs Analysis -- References -- 6: Role of Information and Communication Technology (ICT): Digitalisation of the Energy Industry -- 6.1 Development of Balancing in the Energy System Using the Example of Electricity -- 6.2 Current Balancing for Electricity, Gas and Heat Markets -- 6.2.1 Basics of Energy Balancing Using the Example of Electricity -- 6.2.2 Metering Point Operation: Role of the Smart Meter Rollout -- 6.2.3 Market Communication and Measurement Data Analysis -- 6.2.4 Balancing: Comparison Between Gas and Electricity -- 6.3 Role of ICT and Other Innovations in the System Management (Electricity) of the Future -- Literature -- 7: Perspectives of the General Energy System (GES) -- 7.1 Introduction -- 7.2 European Perspective -- 7.3 China Perspective -- 7.4 USA Perspective -- 7.5 Building a Sustainable Hydrogen Economy (Example EU/Germany) -- 7.5.1 Introduction -- 7.5.2 Concept for Germany -- 7.5.3 Regional Concepts Using the Example of the Land of Saxony-Anhalt. 327 $aReferences -- Appendix -- Conversion Chains (Energy Conversion Chains) of the Selected Processes (Table A.1). 606 $aElectric power distribution 606 $aEnergy industries 606 $aInterconnected electric utility systems 615 0$aElectric power distribution. 615 0$aEnergy industries. 615 0$aInterconnected electric utility systems. 676 $a621.319 700 $aKomarnicki$b Przemyslaw$0995630 702 $aKranhold$b Michael 702 $aStyczynski$b Zbigniew A$g(Zbigniew Antoni),$f1949- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910633936703321 996 $aSector coupling - energy-sustainable economy of the future$93090282 997 $aUNINA