LEADER 11939nam 2200541 450 001 9910633913003321 005 20230406060242.0 010 $a9789811956423$b(electronic bk.) 010 $z9789811956416 035 $a(MiAaPQ)EBC7151153 035 $a(Au-PeEL)EBL7151153 035 $a(CKB)25510415700041 035 $a(OCoLC)1353101521 035 $a(BIP)085092869 035 $a(EXLCZ)9925510415700041 100 $a20230406d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aGenome editing in cardiovascular and metabolic diseases /$fJunjie Xiao, editor 210 1$aSingapore :$cSpringer,$d[2023] 210 4$dİ2023 215 $a1 online resource (338 pages) 225 1 $aAdvances in experimental medicine and biology ;$vVolume 1396 311 08$aPrint version: Xiao, Junjie Genome Editing in Cardiovascular and Metabolic Diseases Singapore : Springer,c2023 9789811956416 320 $aIncludes bibliographical references. 327 $aIntro -- Contents -- Contributors -- Part I: Overview -- An Overview of Genome Editing in Cardiovascular and Metabolic Diseases -- 1 Genome-Editing Technologies -- 1.1 Nuclease Editing -- 1.2 Base Editing -- 1.3 Epigenome Editing -- 1.4 Other Types of Editing -- 2 Disease Modeling and Diagnostics -- 3 Therapeutic Genome Editing -- 4 Outlook -- References -- Part II: Bioinformatics -- Online Databases of Genome Editing in Cardiovascular and Metabolic Diseases -- 1 Cardiovascular and Metabolic Disease Genetic Basis -- 2 Significance of Genome Editing in Cardiovascular and Metabolic Diseases -- 3 Lung Genetic Disorders and Therapeutic Options -- 4 History and Genome Editing at Present -- 5 How to Perform a Genome Editing Experiment Nowadays (CRISPR-Cas) -- 5.1 Molecular Mechanism and Components of the CRISPR-Cas System -- 6 How to Prepare a CRISPR-Cas Experiment -- 7 Different Types of CRISPR-Cas-Based System -- 8 Off-Target Effect, Predictive Tools, and Strategies to Avoid Them -- 9 Guide RNA Designing and Available Online Tools and Databases -- 10 Transfection Mechanisms -- 11 Cardiovascular and Metabolic Disease Genome Editing in the Field -- 12 Experiments Using CRISPR-Cas9 -- 12.1 PRKAG2 Cardiac Syndrome -- 12.2 MYH7 Dysfunction -- 13 Experiments Using TALENs -- 13.1 PLN-Associated Hereditary Heart Failure -- 13.2 Obesity and LepR -- 14 Experiments Using ZFN -- 14.1 FBN1 and Marfan Syndrome -- References -- Part III: Genome Editing in Cardiovascular Disease -- Genome Editing and Cardiac Regeneration -- 1 Background -- 2 Scope of Cardiac Regeneration -- 2.1 Understanding Cardiac Regeneration from Animal Models -- 2.2 Developing Approaches for Cardiac Regeneration -- 3 Pathways and Regulators of Cardiac Regeneration -- 3.1 Hippo Signaling Pathway -- 3.2 Wnt Signaling Pathway -- 3.3 PI3K-AKT Signaling Pathway. 327 $a4 Approaches to Cardiac Regeneration -- 4.1 Genome Editing of Endogenous Cells to Initiate Cardiac Repair -- 4.1.1 In Situ Promotion of Proliferation and Cell Cycle Re-entry -- 4.1.2 In Vivo Trans-differentiation of Cardiac Fibroblasts -- 4.2 Transplantation of Exogenous Cells -- 5 Perspective -- References -- Genome Editing and Myocardial Development -- 1 Overview -- 2 Cardiac Development -- 2.1 Early Development and Cardiac Crescent -- 2.2 Cardiac Looping -- 2.3 Atrium, Sino Atrial Node, and Atrial Ventricular Node Development -- 2.4 Ventricular Development -- 2.5 Atrioventricular Valve Development -- 2.6 Outflow Track Development -- 2.7 Conductance System -- 3 Genetic Archetypes in Cardiac Development -- 4 Genetic Archetypes for Syndromic Congenital Heart Defects -- 5 Genetic Archetypes of Nonsyndromic Isolated Congenital Heart Defects -- 6 Genetic Archetypes for Left-Right Patterning -- 7 Genetic Archetypes of Inherited Arrhythmias -- 7.1 Long QT Syndromes -- 7.2 Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) -- 7.3 Brugada Syndromes (BrS) -- 7.4 Short QT Syndrome (SQTS) -- 8 Genetic Archetypes of Inherited Cardiomyopathy -- 8.1 Dilated Cardiomyopathy (DCM) -- 8.2 Hypertrophic Cardiomyopathy (HCM) -- 8.3 Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) -- 8.4 Restrictive Cardiomyopathy (RCM) -- 8.5 Left Ventricular Non-compaction Cardiomyopathy -- 8.6 Cardiomyopathy in Other Disorders -- 9 Genome Editing in Modeling Inheritable Heart Diseases in Model Organisms -- 10 Other Considerations -- 11 Conclusions -- References -- Genome Editing and Heart Failure -- 1 Introduction -- 2 Pathophysiology of Heart Failure -- 3 Management of Heart Failure with a Reduced Ejection Fraction -- 4 Management of Heart Failure with a Preserved Ejection Fraction -- 5 The Genetic Architecture of Heart Failure -- 6 Tools for Genome Editing. 327 $a7 Genome Editing in Heart Failure -- 8 Using Genome Editing to Create In Vitro and In Vivo Disease Models of Heart Failure -- 9 Genome Editing for Therapy of Heart Failure -- 10 Conclusions -- References -- Genome Editing and Pathological Cardiac Hypertrophy -- 1 Introduction -- 2 Genetic Backgrounds of Cardiomyopathies -- 2.1 HCM and DCM -- 2.2 Arrhythmogenic Right Ventricular Cardiomyopathy -- 2.3 Restrictive Cardiomyopathy -- 2.4 Left Ventricular Noncompaction Cardiomyopathy (LVNC) -- 3 Genome Editing in Cell Models of Cardiac Disease -- 4 Genome Editing in Animal Models -- 5 Germline and Somatic Genome as a Therapeutic Implication and Ethical Problems -- 6 Hypertrophic Cardiomyopathy and Genome Editing -- 7 Duchenne Muscular Dystrophy and Genome Editing -- 8 Transthyretin Cardiac Amyloidosis -- 9 Long QT Syndrome -- 10 Future Directions in CRISPR and Cardiomyopathy Treatment -- 11 Advances in Nonviral Delivery System -- 12 Conclusions -- References -- Genome Editing and Diabetic Cardiomyopathy -- 1 Introduction -- 2 Diabetic Cardiomyopathy -- 3 Genetic Editing -- 4 Advancement in Genetic Editing Technology -- 5 Genetic Editing in Diabetic Cardiomyopathy -- 6 Future Direction -- References -- Genome Editing and Inherited Cardiac Arrhythmias -- 1 Introduction -- 2 Long QT Syndrome -- 3 Brugada Syndrome -- 3.1 Catecholaminergic Polymorphic Ventricular Tachycardia -- 4 Short QT Syndrome -- 5 Summary and Future Perspectives -- References -- Genome Editing and Atrial Fibrillation -- 1 Background -- 2 Genome Editing and Atrial Fibrillation -- 3 Atrial Fibrillation Substrate and Modifiable Electrical Targets -- 3.1 Ion Channels -- 3.2 Gap Junctions -- 3.3 Parasympathetic Signaling -- 4 Atrial Fibrillation Substrate and Modifiable Structural Aspects -- 4.1 Fibrosis -- 4.2 Apoptosis -- 5 Oxidative Stress and Modifiable Structural and Electrical Aspects. 327 $a5.1 ROS Generation and NADPH Oxidase -- 5.2 Oxidized Calmodulin-Dependent Protein Kinase II (oxCAMKII) -- 6 Conclusions -- References -- Genome Editing in Dyslipidemia and Atherosclerosis -- 1 Dyslipidemia and Atherosclerosis -- 2 Current Therapies of Dyslipidemia and Atherosclerosis -- 2.1 From Traditional Pharmacology to Targeted Therapy -- 2.2 Nucleic Acid-Based Therapy -- 3 Genome Editing -- 3.1 Evolution of Genome Editing Technology -- 3.2 In Vivo Delivery of Genome Editing Systems -- 4 Genome Editing in Dyslipidemia and Atherosclerosis -- 4.1 Genome Editing: A Driving Force for Dyslipidemia and Atherosclerosis Research -- 4.2 Preclinical Investigation of Genome Editing for Dyslipidemia and Atherosclerosis -- 4.3 Further Target Discovery for Dyslipidemia and Atherosclerosis -- 4.3.1 Gene and Variant Targets Inspired by Human Knockout -- 4.3.2 Candidate Genes and Variants from Large-Scale Genetic Studies -- 4.3.3 Driver Genes and Variants of Systems Genetic Studies -- 5 Concluding Remarks and Future Perspectives -- References -- Genome Editing to Abrogate Muscle Atrophy -- 1 Background -- 2 Muscle Atrophy -- 2.1 Aging -- 2.2 Nerve Injury -- 2.3 Immobilization -- 2.4 Fasting -- 2.5 Chronic Heart Failure -- 2.6 Cachexia -- 3 Protein Synthesis and Degradation in Muscle Atrophy -- 3.1 The Ubiquitin-Proteasome System -- 3.2 The Autophagy-Lysosome System -- 4 Molecular Pathways Underlying Muscle Atrophy -- 4.1 IGF1-Akt-FoxO Pathway -- 4.2 NF-kappaB Pathway -- 4.3 Myostatin Pathway -- 4.4 beta2-Adrenoceptor Pathway -- 5 Genome Editing in Muscle Atrophy -- 5.1 Genome Editing -- 5.1.1 Meganuclease -- 5.1.2 Zinc Finger Nuclease (ZFN) -- 5.1.3 Transcriptional Activation-Like Effector Nuclease (TALEN) -- 5.1.4 CRISPR/Cas9 System -- 5.2 Application of Genome Editing in Muscle Atrophy -- 6 Developing Approaches for Muscle Atrophy -- References. 327 $aPart IV: Genome Editing in Metabolic Diseases -- Genome Editing and Obesity -- 1 Introduction -- 2 The Genetics Underlying Obesity -- 2.1 Monogenic Obesity -- 2.2 Polygenic Obesity -- 3 Currently Available Obesity Treatments -- 3.1 Dietary Changes, Exercise and Behaviour Therapy -- 3.2 Prescription Weight-Loss Medication -- 3.3 Metabolic Surgery -- 4 Latest Strategies for Obesity Treatment -- 4.1 Genome Editing Tools for Therapeutics in Obesity -- 5 Conclusions -- References -- Genome Editing and Fatty Liver -- 1 Background -- 1.1 Pathophysiology of Alcoholic Liver Disease -- 1.2 Pathophysiology of Nonalcoholic Fatty Liver Disease -- 2 Genetic Variants and Fatty Liver Disease -- 2.1 Candidate Gene Studies -- 2.2 GWAS Findings -- 2.3 Transmembrane 6 Superfamily 2 (TM6SF2) -- 2.4 Glucokinase Regulator (GCKR) -- 2.5 Patatin-Like Phospholipase Domain-Containing Protein 3 (PNPLA3) -- 2.6 Membrane-Bound O-acetyltransferase Domain-Containing 7 (MBOAT7) -- 2.7 Heme Oxygenase (HMOX1) -- 2.8 Alcohol Dehydrogenase (ADH) and Aldehyde Dehydrogenase (ALDH) -- 3 Gene Editing Models for Fatty Liver Disease -- 3.1 CRISPR/Cas9: A Genome Editing Tool -- 3.2 Mechanism of CRISPR/Cas9 Genome Editing -- 3.3 CRISPR/Cas9-Mediated Nonalcoholic Fatty Liver Disease (NAFLD) Models -- 3.3.1 Transmembrane 6 Superfamily 2 (TM6SF2)-Targeted Fatty Liver Disease Models -- 3.3.2 PNPLA3-Targeted Models -- 3.3.3 Miscellaneous Models -- 4 ``Good Fit´´ Genome Editing Tool Selection for ALD and NAFLD Variant Replication -- 4.1 Cutting-Edge Cas9 Variants -- 4.1.1 Base Editor for Fatty Liver Disease Genome Variants -- 4.1.2 Prime Editor for ALD and NAFLD Genome Variants -- 4.2 Gene Delivery Methods for Refining Efficacy of Gene Editing Process -- 4.2.1 Nonviral Delivery Methods -- 4.2.2 Viral Delivery Methods -- 5 Discussion -- 6 Future Implications -- 7 Conclusions -- References. 327 $aGenomic Editing and Diabetes. 330 8 $aThis book provides the latest research progress on genome editing in cardiovascular and metabolic diseases and includes bioinformatics research methodology of genome editing. Genome editing is a genetic engineering technique precisely modified specific target genes of organism genome, which has been applied to basic theoretical research and production applications from plants and animals to gene therapy of human beings. Cardiovascular and metabolic diseases have become major factors affecting human health worldwide. This book contains information about bioinformatics, genome editing in cardiovascular diseases, genome editing in metabolic diseases and therapeutic effects. It will be useful for biologist, cardiologist, cardiovascular surgeons, endocrinologist, internists, nurses, undergraduate and graduate students in medicine and cell biology and others interested in cardiovascular and metabolic medicine. 410 0$aAdvances in experimental medicine and biology ;$vVolume 1396. 606 $aCardiovascular system$xDiseases 610 $aInternal Medicine 610 $aMedical 615 0$aCardiovascular system$xDiseases. 676 $a616.1 702 $aXiao$b Junjie$4edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910633913003321 996 $aGenome Editing in Cardiovascular and Metabolic Diseases$92994384 997 $aUNINA