LEADER 00645nam0-2200253 --450 001 9910633084003321 005 20231012162036.0 010 $a9783825254117 100 $a20230104d2021----kmuy0itay5050 ba 101 0 $ager 102 $aDE 105 $a 001yy 200 1 $aHeidegger-Lexikon$fHarald Seubert 210 $aLeiden$cFink$d2021 215 $a252 p.$d22 cm 225 1 $aUTB$v5411 700 1$aSeubert,$bHarald$0181217 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910633084003321 952 $a102 LEX 02$b2022/1559$fFLFBC 959 $aFLFBC 996 $aHeidegger-Lexikon$92996220 997 $aUNINA LEADER 03818nam 22007214a 450 001 9910783917103321 005 20230617010200.0 010 $a1-281-90582-8 010 $a9786611905828 010 $a981-270-345-4 024 3 $a9789812562760 035 $a(CKB)1000000000334304 035 $a(EBL)296249 035 $a(OCoLC)476064524 035 $a(SSID)ssj0000249600 035 $a(PQKBManifestationID)11206954 035 $a(PQKBTitleCode)TC0000249600 035 $a(PQKBWorkID)10228841 035 $a(PQKB)11337574 035 $a(WSP)00000232 035 $a(Au-PeEL)EBL296249 035 $a(CaPaEBR)ebr10174102 035 $a(CaONFJC)MIL190582 035 $a(MiAaPQ)EBC296249 035 $a(EXLCZ)991000000000334304 100 $a20060719d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSpectral analysis of differential operators$b[electronic resource] $einterplay between spectral and oscillatory properties /$fFedor S. Rofe-Beketov, Aleksandr M. Kholkin ; translated by Ognjen Milatovic ; with foreword by Vladimir A. Marchenko 210 $aHackensack, NJ $cWorld Scientific$dc2005 215 $a1 online resource (463 p.) 225 1 $aWorld Scientific monograph series in mathematics ;$vv. 7 300 $aDescription based upon print version of record. 311 $a981-256-276-1 320 $aIncludes bibliographical references (p. 359-429) and index. 327 $aForeword; Contents; Preface; Acknowledgments; Introduction; 1. Relation Between Spectral and Oscillatory Properties for the Matrix Sturm-Liouville Problem; 2. Fundamental System of Solutions for an Operator Differential Equation with a Singular Boundary Condition; 3. Dependence of the Spectrum of Operator Boundary Problems on Variations of a Finite or Semi-Infinite Interval; 4. Relation Between Spectral and Oscillatory Properties for Operator Differential Equations of Arbitrary Order 327 $a5. Self-Adjoint Extensions of Systems of Differential Equations of Arbitrary Order on an Infinite Interval in the Absolutely Indefinite Case6. Discrete Levels in Spectral Gaps of Perturbed Schrodinger and Hill Operators; Appendix A Self-Adjoint Extensions of Differential Opera- tors on a Finite Interval in Spaces of Vector-Functions; Bibliography; List of Symbols; Index 330 $aThis is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic Schro?dinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other 410 0$aWorld Scientific monograph series in mathematics ;$vv. 7. 606 $aSpectral theory (Mathematics) 606 $aDifferential operators 606 $aSelfadjoint operators 606 $aHilbert space 606 $aOperator theory 615 0$aSpectral theory (Mathematics) 615 0$aDifferential operators. 615 0$aSelfadjoint operators. 615 0$aHilbert space. 615 0$aOperator theory. 676 $a515/.7222 700 $aRofe-Beketov$b Fedor S$0624781 701 $aKhol?kin$b Aleksandr M$01507899 701 $aMilatovic$b Ognjen$01507900 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783917103321 996 $aSpectral analysis of differential operators$93738942 997 $aUNINA