LEADER 03283nam 22006375 450 001 9910632483403321 005 20251113210021.0 010 $a981-19-6731-8 024 7 $a10.1007/978-981-19-6731-3 035 $a(MiAaPQ)EBC7148698 035 $a(Au-PeEL)EBL7148698 035 $a(CKB)25504184700041 035 $a(DE-He213)978-981-19-6731-3 035 $a(PPN)26635078X 035 $a(EXLCZ)9925504184700041 100 $a20221128d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aVariational Approach to Hyperbolic Free Boundary Problems /$fby Seiro Omata, Karel Svadlenka, Elliott Ginder 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (99 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8201 311 08$aPrint version: Omata, Seiro Variational Approach to Hyperbolic Free Boundary Problems Singapore : Springer,c2022 9789811967306 320 $aIncludes bibliographical references. 327 $aChapter 1. Introduction -- Chapter 2.Physical motivation -- Chapter 3.Discrete Morse flow -- Chapter 4. Discrete Morse flow with free boundary -- Chapter 5.Energy-preserving discrete Morse flow -- Chapter 6.Numerical examples and applications. 330 $aThis volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations. . 410 0$aSpringerBriefs in Mathematics,$x2191-8201 606 $aDifferential equations 606 $aMathematical optimization 606 $aCalculus of variations 606 $aFunctional analysis 606 $aDifferential Equations 606 $aCalculus of Variations and Optimization 606 $aFunctional Analysis 615 0$aDifferential equations. 615 0$aMathematical optimization. 615 0$aCalculus of variations. 615 0$aFunctional analysis. 615 14$aDifferential Equations. 615 24$aCalculus of Variations and Optimization. 615 24$aFunctional Analysis. 676 $a515.35 700 $aOmata$b Seiro$01268031 702 $aGinder$b Elliott 702 $aSvadlenka$b Karel 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910632483403321 996 $aVariational Approach to Hyperbolic Free Boundary Problems$92982670 997 $aUNINA