LEADER 00897nam0-22003251i-450 001 990006196580403321 005 20180924094015.0 035 $a000619658 035 $aFED01000619658 035 $a(Aleph)000619658FED01 035 $a000619658 100 $a20000112d1927----km-y0itay50------ba 101 0 $aeng 105 $a--------00-yy 200 1 $a<>English Constitution$fWalter Bagehot ; with an introduction by The Earl of Balfour. 210 $aOxford$cUniversity Press$d1927 215 $a312 p.$d15 cm 676 $a342.42 700 1$aBagehot,$bWalter$f<1826-1877>$0120041 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006196580403321 952 $aI D 333$b27554$fFGBC 952 $aDP I-169$b1513$fDEC 952 $aDP I-169$fDEC 959 $aFGBC 959 $aDEC 959 $aDEC 996 $aEnglish Constitution$915045 997 $aUNINA LEADER 01180nam--2200361---450- 001 990003612650203316 005 20120118135032.0 010 $a978-88-387-5191-9 035 $a000361265 035 $aUSA01000361265 035 $a(ALEPH)000361265USA01 035 $a000361265 100 $a20120118d2009----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aImposta di bollo$eguida pratica per gli enti locali$econ prontuario alfabetico per l'applicazione o l'esenzione dell'imposta sulla documentazione amministrativa$fEnzo Cuzzola 210 $aSantarcangelo di Romagna$cMaggioli$d2009 215 $a284 p.$d24 cm$e1 CD-ROM 225 2 $aProgetto ente locale$v201 410 0$aProgetto ente locale$12001$v201 606 0 $aBolli$xLegislazione$2BNCF 676 $a343.45057 700 1$aCUZZOLA,$bEnzo$0608889 801 0$aIT$bsalbc$gISBD 912 $a990003612650203316 951 $aXXIV.5.C. 972$b64502 G.$cXXIV.5.C.$d00305057 959 $aBK 969 $aGIU 979 $aIANNONE$b90$c20120118$lUSA01$h1350 979 $aCHIARA$b90$c20140625$lUSA01$h0913 996 $aImposta di bollo$91114952 997 $aUNISA LEADER 06288nam 22007575 450 001 9910632469803321 005 20251113185404.0 010 $a9783031221378 010 $a3031221370 024 7 $a10.1007/978-3-031-22137-8 035 $a(MiAaPQ)EBC7144545 035 $a(Au-PeEL)EBL7144545 035 $a(CKB)25456663700041 035 $a(PPN)266348904 035 $a(OCoLC)1351749245 035 $a(DE-He213)978-3-031-22137-8 035 $a(EXLCZ)9925456663700041 100 $a20221123d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced Data Mining and Applications $e18th International Conference, ADMA 2022, Brisbane, QLD, Australia, November 28?30, 2022, Proceedings, Part II /$fedited by Weitong Chen, Lina Yao, Taotao Cai, Shirui Pan, Tao Shen, Xue Li 205 $a1st ed. 2022. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2022. 215 $a1 online resource (500 pages) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v13726 311 08$aPrint version: Chen, Weitong Advanced Data Mining and Applications Cham : Springer,c2023 9783031221361 320 $aIncludes bibliographical references and index. 327 $aText Mining -- Towards Idea Mining: Problem-Solution Phrases Extraction From Text -- Spam Email Categorization with NLP and Using Federated Deep Learning -- SePass: Semantic Password Guessing Using k-nn Similarity Search in Word Embeddings -- DeMRC: Dynamically Enhanced Multi-hop Reading Comprehension Model for Low Data -- ESTD: Empathy Style Transformer with Discriminative Mechanism -- Detection Method of User Behavior Transition on Computer -- Image, Multimedia and Time Series Data Mining -- Ensemble Image Super-resolution CNNs for Small Data and Diverse Compressive Models -- Optimizing MobileNetV2 Architecture Using Split Input and Layer Replications for 3D Face Recognition Task -- GANs for Automatic Generation of Data Plots -- An Explainable Approach to Semantic Link Mining in Multi-sourced Dynamic Data -- Information Mining from Images of Pipeline Based on Knowledge Representation and Reasoning -- Binary Gravitational Subspace Search for Outlier Detection in High Dimensional Data Streams -- Classification, Clustering and Recommendation -- Signal Classification using Smooth Coecients of Multiple Wavelets to Achieve High Accuracy from Compressed Representation of Signal -- On Reducing the Bias of Random Forest -- A collaborative filtering recommendation method integrating user profiles -- A Quality Metric for K-Means Clustering Based on Centroid Locations -- Clustering Method for Touristic Photographic Spots Recommendation -- Personalized Federated Learning with Robust Clustering against Model Poisoning -- A Data-Driven Framework for Driving Style Classification -- Density Estimation in High-Dimensional Spaces: a Multivariate Histogram Approach -- Multi-objective, Optimization, Augmentation, and Database -- Correcting Temporal Overlaps in Process Models Discovered from OLTP Databases -- WDA: A Domain-Aware Database Schema Analysis for improving OBDA-based Event Log Extractions -- A Cricket-based Selection Hyper-heuristic for Many-objective Optimization Problems -- Multi-Objective Optimization Based Feature Selection Using Correlation -- SAME: Sampling Attack in Multiplex Network Embedding -- Cycles Improve Conditional Generators: Synthesis and Augmentation for Data Mining -- Using the Strongest Adversarial Example to Alleviate Robust Overfitting -- Deduplication Over Heterogeneous Attribute Types (D-HAT) -- Others -- Probing Semantic Grounding in Language Models of Code with Representational Similarity Analysis -- Location Data Anonymization Retaining Data Mining Utilization -- A Distributed SAT-based Framework for Closed Frequent Itemset Mining -- Index Advisor via DQN with Invalid Action Mask in Tree-Structured Action Space -- A Hybrid Model for Demand Forecasting Based on the Combination of Statistical and Machine Learning Methods -- A Boosting Algorithm for Training from Only Unlabeled Data -- A Study of the Effectiveness of Correction Factors for Log Transforms in Ensemble Models. 330 $aThe two-volume set LNAI 13725 and 13726 constitutes the proceedings of the 18th International Conference on Advanced Data Mining and Applications, ADMA 2022, which took place in Brisbane, Queensland, Australia, in November 2022. The 72 papers presented in the proceedings were carefully reviewed and selected from 198 submissions. The contributions were organized in topical sections as follows: Finance and Healthcare; Web and IoT Applications; On-device Application; Other Applications; Pattern Mining; Graph Mining; Text Mining; Image, Multimedia and Time Series Data Mining; Classification, Clustering and Recommendation; Multi-objective, Optimization, Augmentation, and Database; and Others. 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v13726 606 $aArtificial intelligence 606 $aData mining 606 $aComputer vision 606 $aComputer systems 606 $aEducation$xData processing 606 $aApplication software 606 $aArtificial Intelligence 606 $aData Mining and Knowledge Discovery 606 $aComputer Vision 606 $aComputer System Implementation 606 $aComputers and Education 606 $aComputer and Information Systems Applications 615 0$aArtificial intelligence. 615 0$aData mining. 615 0$aComputer vision. 615 0$aComputer systems. 615 0$aEducation$xData processing. 615 0$aApplication software. 615 14$aArtificial Intelligence. 615 24$aData Mining and Knowledge Discovery. 615 24$aComputer Vision. 615 24$aComputer System Implementation. 615 24$aComputers and Education. 615 24$aComputer and Information Systems Applications. 676 $a006.31 702 $aChen$b Weitong 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910632469803321 996 $aAdvanced Data Mining and Applications$92982700 997 $aUNINA