LEADER 09248nam 2200517 450 001 9910631092103321 005 20230331071856.0 010 $a9783031161315$b(electronic bk.) 010 $z9783031161308 035 $a(MiAaPQ)EBC7143471 035 $a(Au-PeEL)EBL7143471 035 $a(CKB)25402371400041 035 $a(PPN)266349293 035 $a(EXLCZ)9925402371400041 100 $a20230331d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectrokinetic microfluidics and nanofluidics /$fDongqing Li 210 1$aCham, Switzerland :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (288 pages) 225 1 $aFluid mechanics and its applications ;$vVolume 133 311 08$aPrint version: Li, Dongqing Electrokinetic Microfluidics and Nanofluidics Cham : Springer International Publishing AG,c2023 9783031161308 320 $aIncludes bibliographical references. 327 $aIntro -- Preface -- Contents -- About the Author -- 1 Basics of Interfacial Electrokinetics -- 1.1 Electrical Double Layer -- 1.1.1 Electrical Field in a Dielectric Medium -- 1.1.2 Origin of Surface Charge -- 1.1.3 Electrical Double Layer (EDL) -- 1.1.4 Boltzmann Distribution -- 1.1.5 Theoretical Model and Analysis of EDL -- 1.1.6 EDL Field Near a Flat Surface -- 1.1.7 EDL Field Around a Spherical Surface -- 1.1.8 EDL Field Around a Cylinder -- 1.1.9 Concentration and pH Dependence of Surface Charge and Zeta Potential -- 1.2 Electroosmotic Flows in Microchannels -- 1.2.1 Electroosmotic Flow Velocity -- 1.2.2 Electroosmotic Flow in a Slit Microchannel -- 1.2.3 Electroosmotic Flow in a Cylindrical Microchannel -- 1.3 Introduction to Electrophoresis -- References -- 2 Induced Charge Electrokinetic Transport Phenomena -- 2.1 Basics of Induced Charge Electrokinetics -- 2.2 Induced Charge Electroosmotic Flow [3, 4, 8, 9, 10, 11] -- 2.2.1 Flow Field with Vortices in the Converging-Diverging Section -- 2.2.2 Regulating Flow -- 2.3 Flow Mixing by Induced Charge Electroosmotic Flow -- 2.4 Induced Charge Electrokinetic Motion of Fully Polarizable Particles -- 2.4.1 Electric Field -- 2.4.2 Flow Field -- 2.4.3 Particle Motion -- 2.4.4 Transient Motion of Conducting Particles Along the Center of a Microchannel -- 2.4.5 Wall Effects on Induced Charge Electrokinetic Motion of Conducting Particles -- 2.4.6 Particle Focusing in a Microchannel -- 2.4.7 Particle Separation by Density -- 2.5 Induced Charge Particle-Particle Interactions -- 2.6 Polarizability Dependence of Electrokinetic Motion of Dielectric Particles -- 2.6.1 Polarization of Dielectrics -- 2.6.2 The Induced Surface Potential and Electroosmotic Flow -- 2.6.3 Interaction of Two Dielectric Particles Due to Induced Charge EOF -- References -- 3 DC-Dielectrophoresis in Microfluidic Chips. 327 $a3.1 Basics of Dielectrophoresis -- 3.2 DC-DEP Separation of Micro-particles and Cells -- 3.3 DEP Produced by Asymmetric Orifices on Sidewalls of Microchannel -- 3.3.1 DC-DEP Separation of Micro-particles By Size -- 3.3.2 DC-DEP Separation of Nano-particles By Size -- 3.3.3 DC-DEP Separation of Nano-particles By Type -- 3.3.4 AC-DEP Separation of Biological Cells -- References -- 4 Electroosmotic Flow and Electrophoresis in Nanochannels -- 4.1 Difference and Challenge -- 4.2 Single Nanochannel Fabrication by Nano-crack Method -- 4.2.1 Effect of Reagents -- 4.2.2 Effects of Alcohol Volume and Heating Time -- 4.2.3 Concentration Effects and the Role of Water -- 4.2.4 Temperature Effects -- 4.2.5 Number of Nano-cracks -- 4.2.6 Controlling the Locations of the Nano-cracks -- 4.2.7 How to Transfer the Pattern of a Nano-crack into a Positive Nanochannel Mold -- 4.2.8 Effects of Photoresist Type (Solvent Content) -- 4.2.9 Effects of Spin-Coating Time -- 4.2.10 Effects of UV Exposure Dose -- 4.2.11 Thickness of the Photoresist Layer -- 4.2.12 Bi-layer PDMS Microchannel and Nanochannel Fabrication -- 4.2.13 Durability of Nanochannel Molds -- 4.2.14 Chip Bonding -- 4.3 Characteristics of Electroosmotic Flow in Nanochannels -- 4.3.1 EOF Velocity Measurement by the Current Slope Method -- 4.3.2 Channel Size Effects -- 4.3.3 Ionic Concentration Effects -- 4.3.4 Electric Field Effect -- 4.3.5 Ion Size Effects -- 4.3.6 Ion Valence Effects -- 4.3.7 pH Value Effects -- 4.4 Nanoparticle Transport in Nanochannels -- 4.4.1 Ionic Concentration Effects -- 4.4.2 Effects of Particle Size to Channel Size Ratio -- 4.4.3 Electric Field Effects -- References -- 5 Janus Particles and Janus Droplets -- 5.1 Introduction -- 5.2 Induced Charge Electrokinetic Motion of Janus Particles -- 5.2.1 Electric Field -- 5.2.2 Flow Field -- 5.2.3 Particle Motion. 327 $a5.2.4 Micro-vortex Generation and Particle Motion -- 5.2.5 Electrokinetic Motion of Janus Particle in Different Orientations -- 5.2.6 Zeta Potential Effect on Vortices Around Janus Particle -- 5.2.7 Effect of Janus Particle Size on Its Motion -- 5.2.8 Different Portion of Polarizable Material of Janus Particle -- 5.2.9 Experimentally Observed Motion of Janus Particles -- 5.3 Electrically Induced Janus Droplets -- 5.3.1 Effect of the Concentration of the Nanoparticle Suspension -- 5.3.2 Effect of the Applied Electric Field -- 5.3.3 Vortices Around EIJD -- 5.3.4 Effect of the Applied Electrical Field -- 5.3.5 Effect of the Surface Coverage Under the Same Electrical Field -- 5.4 Electrokinetic Motion of EIJD in Microchannels -- 5.4.1 Formation of EIJD with Different Surface Coverage by Nanoparticles (r) -- 5.4.2 Vortices in Vicinity of Janus Droplet -- 5.4.3 Effects of Applied Electrical Field and Surface Coverage of Nanoparticles on Electrokineitc Motion -- 5.4.4 Effect of the Janus Droplet Size on Electrokineitc Motion -- 5.4.5 Effect of Electrolyte Concentration on Electrokineitc Motion of EIJD -- 5.4.6 Flow Focusing with Positively Charged Droplets -- 5.5 Droplets with Multiple Heterogeneous Surface Strips -- 5.5.1 EOF Fields Around Janus Droplets -- 5.5.2 Electrokinetic Motion of Droplets with Different Nanoparticle Films -- 5.6 Micro-valve Controlled by an Electrically Induced Janus Droplet -- 5.6.1 Rotation of the EIJD by Switching Electric Field -- 5.6.2 Operation of the Micro-valve -- 5.6.3 Effect of the Electric Field Strength on Micro-valve Switching Time -- 5.6.4 Sealing Performance of the EIJD Micro-valve -- References -- 6 Nanofluidic Iontronic Devices -- 6.1 Nanofluidic Based Iontronics -- 6.2 Ionic Diode Based on an Asymmetric-Shaped Nanoparticle Membrane -- 6.2.1 Fabrication of Asymmetric NCNM -- 6.2.2 Fabrication of Nanofluidic Chips. 327 $a6.2.3 Measurement System and Experimental Procedures -- 6.2.4 Characterization of the Asymmetric NCNM Membrane -- 6.2.5 Mechanism of the Ionic Current Rectification -- 6.2.6 Performance Evaluation of the NCNM Ionic Diode -- 6.2.7 Modification of the NCNM Ionic Diode with Cationic Surfactant -- 6.2.8 NCNM Ionic Transistor -- 6.2.9 Ionic Diode Bridge -- 6.3 Surface Modification Using Layer-by-Layer Method-Change of Channel Size and Surface Charge -- 6.3.1 Surface Modification Using LBL Method -- 6.3.2 Growth of Polymer Layers on Flat Hard-PDMS Surfaces [2, 3] -- 6.3.3 Growth of Polymer Layers in Nanochannels [2, 3] -- 6.3.4 Ion Type Effects -- 6.4 Single Nanochannel Ionic Diode-Regulation of Ion Transport in Nanofluidics by Surface Modification -- 6.4.1 Surface Modification of Nanochannel for Nanofluidic Diode -- 6.4.2 Working Principle of the Nanofluidic Diode -- 6.4.3 Effects of Frequency of the Applied Electric Field -- 6.4.4 Effects of the Ionic Concentration -- 6.4.5 Effects of Nanochannel Length -- 6.4.6 Effects of Electric Field Strength -- 6.5 From Ionic Diode to Ionic Transistor and Ionic Circuit [4] -- 6.5.1 Ionic Bipolar Junction Transistor -- 6.5.2 Full-Wave Ionic Rectifier -- References -- 7 Differential Resistive Pulse Sensor -- 7.1 Resistive Pulse Sensor -- 7.2 Microfluidic Differential Resistive Pulse Sensor -- 7.2.1 Effects of Particle-to-Sensing Gate Volume Ratio -- 7.2.2 Applied Voltage Effects -- 7.3 Improved Sensitivity by Electrokinetic Flow Focusing Method -- 7.4 High-Throughput Microfluidic Differential Resistive Pulse Sensor -- 7.5 Resistive Pulse Sensor with a Nanochannel Sensing Gate -- 7.6 Enhanced Sensitivity by Modifying Surface Charge of Nano Sensing Gate -- 7.7 Resistive Pulse Sensor with a Carbon Nanotube as Sensing Gate -- 7.7.1 Detection of Potassium Ions -- 7.7.2 Detection of 30-nt and 15-nt ssDNAs -- References. 410 0$aFluid mechanics and its applications ;$vVolume 133. 606 $aElectrokinetics 606 $aMicrofluidics. 606 $aNanofluids 615 0$aElectrokinetics . 615 0$aMicrofluidics. . 615 0$aNanofluids. 676 $a530.417 700 $aLi$b Dongqing $0501772 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910631092103321 996 $aElectrokinetic Microfluidics and Nanofluidics$92965706 997 $aUNINA