LEADER 03605nam 22006855 450 001 9910629297203321 005 20251202151913.0 010 $a9783030959951$b(electronic bk.) 010 $z9783030959937 024 7 $a10.1007/978-3-030-95995-1 035 $a(MiAaPQ)EBC7134132 035 $a(Au-PeEL)EBL7134132 035 $a(CKB)25299477300041 035 $a(PPN)266353738 035 $a(MiAaPQ)EBC31888900 035 $a(Au-PeEL)EBL31888900 035 $a(OCoLC)1350666906 035 $a(BIP)86353805 035 $a(BIP)82787716 035 $a(DE-He213)978-3-030-95995-1 035 $a(EXLCZ)9925299477300041 100 $a20221109d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Introduction to Pattern Recognition and Machine Learning /$fby Paul Fieguth 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (481 pages) 311 08$aPrint version: Fieguth, Paul An Introduction to Pattern Recognition and Machine Learning Cham : Springer International Publishing AG,c2022 9783030959937 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Overview -- Chapter 2. Introduction to Pattern Recognition -- Chapter 3. Learning -- Chapter 4. Representing Patterns -- Chapter 5. Feature Extraction and Selection -- Chapter 6. Distance-Based Classification -- Chapter 7. Inferring Class Models -- Chapter 8. Statistics-Based Classification -- Chapter 9. Classifier Testing and Validation -- Chapter 10. Discriminant-Based Classification -- Chapter 11. Ensemble Classification -- Chapter 12. Model-Free Classification -- Chapter 13. Conclusions and Directions. 330 $aThe domains of Pattern Recognition and Machine Learning have experienced exceptional interest and growth, however the overwhelming number of methods and applications can make the fields seem bewildering. This text offers an accessible and conceptually rich introduction, a solid mathematical development emphasizing simplicity and intuition. Students beginning to explore pattern recognition do not need a suite of mathematically advanced methods or complicated computational libraries to understand and appreciate pattern recognition; rather the fundamental concepts and insights, eminently teachable at the undergraduate level, motivate this text. This book provides methods of analysis that the reader can realistically undertake on their own, supported by real-world examples, case-studies, and worked numerical / computational studies. 606 $aSignal processing 606 $aPattern recognition systems 606 $aSystem theory 606 $aData mining 606 $aDigital and Analog Signal Processing 606 $aAutomated Pattern Recognition 606 $aComplex Systems 606 $aData Mining and Knowledge Discovery 615 0$aSignal processing. 615 0$aPattern recognition systems. 615 0$aSystem theory. 615 0$aData mining. 615 14$aDigital and Analog Signal Processing. 615 24$aAutomated Pattern Recognition. 615 24$aComplex Systems. 615 24$aData Mining and Knowledge Discovery. 676 $a006.31 676 $a006.4 700 $aFieguth$b Paul$0818349 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910629297203321 996 $aIntroduction to Pattern Recognition and Machine Learning$94161072 997 $aUNINA