LEADER 08411nam 2200517 450 001 9910627272803321 005 20230107025022.0 010 $a3-031-05415-6 035 $a(MiAaPQ)EBC7054815 035 $a(Au-PeEL)EBL7054815 035 $a(CKB)24294158800041 035 $a(PPN)263898814 035 $a(EXLCZ)9924294158800041 100 $a20230107d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSensors and instrumentation, aircraft/aerospace and dynamic environments testing, Volume 7 $eproceedings of the 40th IMAC, a conference and exposition on structural dynamics 2022 /$fChad Walber, Matthew Stefanski, Julie M. Harvie, editors 210 1$aCham, Switzerland :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (180 pages) 225 1 $aConference proceedings of the Society for Experimental Mechanics series 311 08$aPrint version: Walber, Chad Sensors and Instrumentation, Aircraft/Aerospace and Dynamic Environments Testing, Volume 7 Cham : Springer International Publishing AG,c2022 9783031054143 320 $aIncludes bibliographical references. 327 $aIntro -- Preface -- Contents -- 1 Test Data Measurement Uncertainty Analysis -- 1.1 Introduction -- 1.2 Background -- 1.3 Random Uncertainty -- 1.4 Systematic Uncertainty -- 1.5 Final Uncertainty Calculation -- 1.6 Consultant -- 1.7 ASME and ISO Compliance -- 1.8 Example -- 1.9 Conclusion -- 2 Forced Vibrations of Damped Non-homogeneous Timoshenko Beams -- Nomenclature -- 2.1 Introduction -- 2.2 Basic Structure -- 2.3 Solution Approaches -- 2.3.1 Analytical Approach -- 2.3.2 Numerical Approach -- 2.4 Numerical Examples -- 2.4.1 Free/Fixed Boundary Conditions -- 2.4.2 Fixed/Fixed Boundary Conditions -- 2.5 Assumed Modes Method -- 2.6 Conclusion -- References -- 3 Parametric Simulations of the BARC Model in SDOF and MIMO Configurations for Estimating Service Environment Severity -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Structure Modeling in ABAQUS -- 3.2.2 Usage of Existing Data -- 3.2.3 Boundary Conditions and Parameterization -- 3.3 Analysis -- 3.3.1 History Outputs -- 3.3.2 Implicit Analysis -- Boundary Conditions -- Modal Analysis -- Mode-Based Steady-State Dynamics -- 3.3.3 Explicit Analysis -- Boundary Conditions -- Computational Cost -- 3.3.4 Frequency Response and Data Analysis -- Spectral Measurements -- Scalar Measurements -- Correlation Measurements -- 3.4 Results and Discussion -- 3.5 Conclusion -- Appendix -- Appendix A: Accelerometer Frequency Responses -- Frequency Responses of Each Accelerometer in the x-Direction -- Accelerometer 1 -- Accelerometer 3 -- Accelerometer 5 -- Frequency Responses of Each Accelerometer in the y-Direction -- Accelerometer 1 -- Accelerometer 3 -- Accelerometer 5 -- Frequency Responses of Each Accelerometer in the z-Direction -- Accelerometer 1 -- Accelerometer 3 -- Accelerometer 5 -- References -- 4 Experimental Modal Analysis of a Resonant Plate During a Mid-Field Pyroshock Replication Test. 327 $a4.1 Introduction -- 4.2 Theory and Background -- 4.2.1 Modal Analysis -- 4.2.2 Formulation of SWAT-TEEM -- 4.3 Modal Analysis of the Resonant Plate Test -- 4.4 Conclusion -- References -- 5 A Parameter Study of the Matrix Power Control Algorithm -- 5.1 Introduction -- 5.2 Explanation of MPCA -- 5.3 Simulation Models -- 5.4 Simulation Results -- 5.5 Experimental Results -- 5.6 Conclusion -- References -- 6 Acoustic Resonance Testing on Production Lines with the Smart Impulse Hammer WaveHitMAX -- 6.1 Introduction -- 6.2 Background -- 6.3 Technical Implementation -- 6.4 Measurement Setup -- 6.5 Analysis -- 6.5.1 Feature Extraction -- 6.5.2 Feature Selection -- 6.5.3 Classification -- 6.6 Conclusion -- References -- 7 Techniques for Modifying MIMO Random Vibration Specifications -- 7.1 Introduction -- 7.2 Typical MIMO Testing Process -- 7.3 Options for MIMO Response-Control Specifications When Data Is Not Available -- 7.3.1 Use a Generic Straight-Line Specification from a Standard -- 7.3.2 Apply the Specification from the Old System to the New System -- 7.3.3 Modify the Specification to Account for the Differences Between A and B -- 7.4 Techniques for Specification Modification -- 7.4.1 Frequency Averaging and Frequency Modification -- 7.4.2 DOF Averaging -- 7.5 Example Using the BARC -- 7.6 Observations -- 7.6.1 Frequency Averaged Specification -- 7.6.2 Frequency Modified Specification -- 7.6.3 All DOF Averaged SPEC -- 7.6.4 Group DOF Averaged SPEC -- 7.7 Conclusion -- References -- 8 On the Selection of Mode Shapes Used in Optimal Sensor Placement -- 8.1 Introduction -- 8.2 The Railway Bridge and Numerical Modeling -- 8.3 Application of the EFI Method and the Optimal Sensor Placement -- 8.4 Conclusion -- References -- 9 Thoughts on Automatic Impulse Hammer Parameters and Sensor Fixation Methods -- 9.1 Introduction. 327 $a9.2 Automated Impulse Hammer Parameters -- 9.2.1 System Description -- 9.2.2 Influence of the Bolt Mass -- 9.2.3 Influence of the Spring Stiffness -- 9.3 Sensor Fixation Parameters -- 9.3.1 Technical Properties of Fixation Methods -- 9.3.2 Experimental Setup -- 9.3.2.1 Normal Direction -- 9.3.2.2 Tangential Direction -- 9.4 Summary -- References -- 10 Modal Correlation of Complex Aerospace Joints Using Automated Variable Substitution -- Nomenclature -- 10.1 Introduction -- 10.2 Analysis Approach -- 10.2.1 Design Variable Definition -- 10.2.2 Symbolic Substitution -- 10.2.3 Iteration Value Assignment -- 10.2.4 Nastran SOL200 Deck Setup -- 10.3 Shell Automation Script -- 10.3.1 Initial Script Setup -- 10.3.2 Iteration Loop Definition -- 10.3.3 Shell Script Execution -- 10.3.4 Output Review -- 10.4 Case Study -- 10.5 Conclusion -- References -- 11 Multi-Shaker Testing at the Component Level -- 11.1 Introduction -- 11.2 Field and Laboratory Configurations -- 11.3 System Tests -- 11.4 ICE Tests -- 11.5 SDOF Tests -- 11.6 Overall System, ICE, and SDOF Comparison -- 11.7 Conclusion -- References -- 12 Balancing Impedance and Controllability in Response Reconstruction -- 12.1 Introduction -- 12.2 Assembly and Environment Definitions -- 12.3 MIMO Simulations -- 12.3.1 Roving Hammer FRFs -- 12.3.2 Mathematical Model -- 12.3.3 Shaker Selection Algorithm -- 12.4 Methodology -- 12.5 MIMO Reconstruction -- 12.6 Simulation with Condition Number Threshold -- 12.6.1 Condition Number Threshold Implementation -- 12.6.2 Simulation Results with Condition Number Threshold -- 12.7 Conclusion -- References -- 13 Challenges and Considerations When Using Hydraulic Modal Shaking in Large-Scale Modal Testing -- 13.1 Background -- 13.2 Hydraulic Actuator Basics -- 13.3 Hydraulic Actuator Nonlinear Distortion -- 13.4 Shaker Performance Limits. 327 $a13.5 Operational and Safety Concerns -- 13.6 Pretest Analysis: End-to-End Force Response Simulation -- 13.7 Hydraulic Multi-Axis Shaker Vibration Test Facilities and Beyond -- 13.8 Conclusion -- References -- 14 Damage and Loose Rivet Detection on an Airbus A320 Panel Using Non-contact Measurement Techniques -- 14.1 Introduction -- 14.2 Experimental Setup -- 14.2.1 Digital Image Correlation (DIC) Setup -- 14.2.2 Laser Doppler Vibrometer (LDV) Setup -- 14.3 Results -- 14.3.1 DIC Full-Field Modal Analysis and Damage Detection -- 14.3.2 Damage Detection with Nonlinear Analysis -- 14.3.3 Damage Detection with ML Techniques -- 14.4 Conclusions -- References -- 15 Localisation of Sonic Sources on a Contemporary Violin Made on a Guarneri del Gesł Model -- 15.1 Introduction -- 15.2 Sound Source Localisation Methods -- 15.3 Experimental Setup -- 15.4 Sound Source Localisation -- 15.4.1 Localisation of Sound Sources -- 15.4.2 Structural Mode Shape Qualitative Analysis -- 15.5 Conclusion -- References. 410 0$aConference proceedings of the Society for Experimental Mechanics series. 606 $aStructural dynamics 606 $aStructural dynamics$vCongresses 615 0$aStructural dynamics. 615 0$aStructural dynamics 676 $a624.171 702 $aWalber$b Chad 702 $aStefanski$b Matthew 702 $aHarvie$b Julie 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910627272803321 996 $aSensors and Instrumentation, Aircraft$92980240 997 $aUNINA