LEADER 02893nam 22005295 450 001 9910627272303321 005 20251009072000.0 010 $a981-16-9131-2 024 7 $a10.1007/978-981-16-9131-7 035 $a(MiAaPQ)EBC7119944 035 $a(Au-PeEL)EBL7119944 035 $a(CKB)25179516100041 035 $a(PPN)265860598 035 $a(DE-He213)978-981-16-9131-7 035 $a(OCoLC)1493008948 035 $a(EXLCZ)9925179516100041 100 $a20221019d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBig Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems /$fby Yaguo Lei, Naipeng Li, Xiang Li 205 $a1st ed. 2023. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2023. 215 $a1 online resource (292 pages) 225 1 $aEngineering Series 311 08$aPrint version: Lei, Yaguo Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems Singapore : Springer,c2022 9789811691300 320 $aIncludes bibliographical references. 327 $aIntroduction and Background -- Traditional Intelligent Fault Diagnosis -- Hybrid Intelligent Fault Diagnosis Methods -- Deep Learning-Based Intelligent Fault Diagnosis -- Data-Driven RUL Prediction -- Data-Model Fusion RUL Prediction. 330 $aThis book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at present Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis Provides abundant experimental validations and engineering cases of the presented methodologies. 410 0$aEngineering Series 606 $aMachinery 606 $aMachinery and Machine Elements 615 0$aMachinery. 615 14$aMachinery and Machine Elements. 676 $a005.7 700 $aLei$b Yaguo$0983733 702 $aLi$b Naipeng 702 $aLi$b Xiang 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910627272303321 996 $aBig-data driven intelligent fault diagnosis and prognosis for mechanical systems$93058476 997 $aUNINA