LEADER 07187nam 2200481 450 001 9910627245203321 005 20230228144114.0 010 $a3-031-11128-1 035 $a(MiAaPQ)EBC7102994 035 $a(Au-PeEL)EBL7102994 035 $a(CKB)24963086200041 035 $a(PPN)265857473 035 $a(EXLCZ)9924963086200041 100 $a20230228d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRobot design $efrom theory to service applications /$fGiuseppe Carbone and Med Amine Laribi 210 1$aCham, Switzerland :$cSpringer International Publishing,$d[2022] 210 4$d©2022 215 $a1 online resource (273 pages) 225 1 $aMechanisms and Machine Science 311 08$aPrint version: Carbone, Giuseppe Robot Design Cham : Springer International Publishing AG,c2022 9783031111273 327 $aIntro -- Preface -- Contents -- About the Editors -- Fundamentals -- 1 Historical Backgrounds on Robot Mechanism Design -- 1.1 Introduction -- 1.2 Robot Structure and Mechanism Role -- 1.3 A Short Account of a History of Robot -- 1.4 Illustrative Examples -- 1.5 Conclusions -- References -- 2 Mathematical Formulations for Robot Modelling: Serial Versus Parallel Structures -- 2.1 Introduction -- 2.2 Modelling of Serial Manipulators -- 2.3 Parallel Manipulators -- 2.4 Discussion -- 2.5 Conclusion -- References -- 3 Simulating Vibrations of Two-Wheeled Self-balanced Robots with Road Excitations by MATLAB -- 3.1 Introduction -- 3.2 The Quarter Car Model and Simplification for the Two-Wheeled Self-balanced Robots -- 3.3 The Road Excitation Profiles -- 3.4 Numeric Solutions to the Simplified Model -- 3.5 Simulating Vertical Movement of Slow-Motion Tow-Wheeled Self-balanced Robots -- 3.5.1 Slow Motion Over Narrow Bumps or Dips (L = 0.5 m and a = 0.1 m) -- 3.5.2 Slow Motion Over Shallow Bumps or Dips (L = 1 m, a = 0.1 m) -- 3.6 Summary -- References -- 4 Path Planning for Special Robotic Operations -- 4.1 Path Planning for General-Purpose Applications -- 4.1.1 Classical Methods -- 4.1.2 Heuristic and Meta-heuristic Methods -- 4.2 Application-Specific Path Planning -- 4.2.1 Path Planning for Automated Guided Vehicles -- 4.2.2 Path Planning for Medical Applications -- 4.2.3 Path Planning for Robotic Welding -- 4.3 Path Planning for Spray Painting Robots -- 4.3.1 The Problem of Tool Path Generation -- 4.3.2 Spray Painting Modeling -- 4.3.3 Path Planning Approaches -- 4.4 Conclusions -- References -- 5 Robot Design: Optimization Methods and Task-Based Design -- 5.1 Introduction -- 5.2 Problem Statement and It's Formulation -- 5.3 Optimality Criteria -- 5.3.1 Workspace -- 5.3.2 Dexterity -- 5.3.3 Safety -- 5.4 Task Specification -- 5.4.1 Task Description. 327 $a5.4.2 Task Modelling -- 5.5 Illustrative Example -- 5.5.1 Analysis of Medical Gestures by Motion Capture -- 5.5.2 Data Analysis -- 5.5.3 Robot Architecture and Kinematic Model -- 5.5.4 Optimal Design -- References -- Applications -- 6 Review: Robots for Inspection and Maintenance of Power Transmission Lines -- 6.1 Introduction -- 6.2 Robots for Power Lines Inspection -- 6.3 Robots for Power Lines Maintenance -- 6.3.1 Installation of Aircraft Warning Spheres on Overhead Ground Wire -- 6.3.2 Cleaning High Voltage Cables and Insulator Chains -- 6.3.3 Installation of Vibration Dampers -- 6.3.4 Installation of Spacers at High Voltage Cables -- 6.3.5 Electromagnetic Interference in the Robots Applied to Inspection/Maintenance of Power Transmission -- 6.4 Discussion -- 6.5 Conclusions -- References -- 7 Towards Human Activity Recognition Enhanced Robot Assisted Surgery -- 7.1 Recap of the Development of Medical Robots -- 7.2 Development and Challenges in Surgical Robots -- 7.3 Theoretical Potentials for Surgical Robot Development -- 7.3.1 Advancement of Control Technology in Surgical Robots -- 7.3.2 Advancement of Sensor Technology in Surgical Robots -- 7.4 Current Limitations of RAMIS -- 7.5 Human Activity Recognition Enhanced Robot-Assisted Minimally Invasive Surgery (HAR-RAMIS) -- 7.6 Conclusions -- References -- 8 Metamorphic Manipulators -- 8.1 Introduction -- 8.1.1 The Application of the Metamorphosis Paradigm to Manipulators -- 8.1.2 The Beginning-The Notion of Modularity and Reconfigurability -- 8.1.3 The Need for a Metamorphic Manipulator -- 8.1.4 The Concept of Metamorphosis on Manipulators -- 8.1.5 Modelling Metamorphic Manipulators -- 8.2 Metamorphic Robot Kinematics -- 8.2.1 A Modular Parametric Analytical Solution for the Kinematics of Metamorphic Serial Manipulators -- 8.3 Metamorphic Manipulator Dynamics. 327 $a8.3.1 Lagrange Formulation of the Dynamic Model for a Serial Metamorphic Manipulator -- 8.4 Design of a Metamorphic Structure -- 8.4.1 General Design Conditions for Simple Dynamics of Fixed Structure Robots -- 8.4.2 Dynamic Isotropy Investigation -- 8.4.3 Evaluation and Synthesis of a Serial Metamorphic Structure -- 8.5 Conclusions -- References -- 9 Analysis of Redundancy and Elasticity of Actuators in Hopping Control of Bipedal Robot CARL Based on SLIP Model -- 9.1 Introduction -- 9.2 Literature Review -- 9.2.1 Virtual Spring in Robotics -- 9.2.2 Biomechanics of Human Leg -- 9.3 Compliant Robotic Leg CARL -- 9.3.1 Series Elastic Actuators in CARL -- 9.3.2 Actuation Control -- 9.4 Hopping Control -- 9.4.1 Joint Stiffness Calculations -- 9.5 Hopping Experiment -- 9.6 Experimental Results -- 9.6.1 Investigation of Landing Phase -- 9.6.2 Investigation of Take-Off Phase -- 9.7 Discussion and Conclusion -- References -- 10 Dynamic Modeling of an Asbestos Removal Mobile Manipulator for Stability Evaluation -- 10.1 Stability Indices for Mobile Manipulators -- 10.1.1 Distance Based Indices -- 10.1.2 Angle Based Indices -- 10.1.3 Energy Based Indices -- 10.1.4 Moment Based Indices -- 10.1.5 Force Based Indices -- 10.2 Dynamic Modeling of the Asbestos Removal Environment -- 10.2.1 Need of Dynamic Modeling -- 10.2.2 Cleaning Environment -- 10.2.3 Description of Representative Frames -- 10.3 Modeling of Asbestos Removal Use Case -- 10.3.1 Evaluation of Reaction Wrench -- 10.3.2 Cleaning of Frontal Wall -- 10.3.3 Cleaning of ceiling -- 10.3.4 Cleaning of Ground -- 10.3.5 Stability Criteria Based on Zero Moment Point -- 10.4 Numerical Evaluation of Stability -- 10.5 Stability Evaluation Using Co-Simulation -- 10.5.1 Development of Cosimulation Model -- 10.5.2 Validation of Stability Evaluation Approaches -- 10.6 Conclusion -- References. 410 0$aMechanisms and machine science. 606 $aRobots$xDesign and construction 606 $aRobots$xDesign and construction$xComputer programs 615 0$aRobots$xDesign and construction. 615 0$aRobots$xDesign and construction$xComputer programs. 676 $a629.892 700 $aCarbone$b Giuseppe$0381230 702 $aLaribi$b Med Amine 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910627245203321 996 $aRobot Design$92975479 997 $aUNINA