LEADER 05293nam 2200457 450 001 9910624303203321 005 20231110224111.0 010 $a3-031-16930-1 035 $a(MiAaPQ)EBC7136994 035 $a(Au-PeEL)EBL7136994 035 $a(CKB)25314889900041 035 $a(PPN)266351018 035 $a(EXLCZ)9925314889900041 100 $a20230327d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSingle molecule mechanics on a surface $egears, motors and nanocars /$fedited by Francesca Moresco and Christian Joachim 210 1$aCham, Switzerland :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (197 pages) 225 1 $aAdvances in Atom and Single Molecule Machines 311 08$aPrint version: Moresco, Francesca Single Molecule Mechanics on a Surface Cham : Springer International Publishing AG,c2022 9783031169298 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Contents -- Unidirectional Motion of Single Molecules at Surfaces -- 1 Unidirectionality Caused by Local Gradients -- 1.1 Rotation -- 1.2 Translation -- 2 Intrinsic Unidirectionality -- 2.1 Rotation -- 2.2 Translation -- References -- DMBI-from n-Type Dopant to Molecular Machines -- 1 Introduction -- 2 1,3-Dimethyl-2-Phenyl-2,3-Dihydro-1H-Benzoimidazole (DMBI) as Building Block for Molecular Machinery -- 3 Varying the Molecular Structure of DMBI -- 4 Summary -- References -- Assembly, Diffusion and Rotation of Organic Molecules on a Gold Surface -- 1 Introduction -- 2 Theoretical Method -- 3 Adsorption of 4-acetylbiphenyl on Au(111) -- 3.1 Diffusion of a Single Molecule on Au(111) -- 3.2 Formation of Supramolecular Assemblies -- 4 Adsorption of DMBI-P on Au(111): Formation of a Unidirectional Molecular-Rotor -- 5 Conclusions -- References -- From Early Prototypes to On-Surface Drivable Single Molecule Nano-vehicles -- 1 Introduction -- 2 STM and Controlled Manipulations of Single Objects -- 3 Evidence of a Lateral Translation Motion on a Surface -- 3.1 First Nano-vehicle on a Surface -- 3.2 Translational Motion of a Nano-vehicle -- 4 Controlled Altitudinal Rotations and Wheel Dimers -- 4.1 Indirect Evidence of an Altitudinal Rotation -- 4.2 Direct Evidence of an Altitudinal Rotation -- 5 Nanocar Race I: Manipulation of Nano-vehicles -- 5.1 The French Nano-vehicle Engaged in the Race -- 5.2 The Five Other Nano-vehicles Engaged in the 1st Race -- 6 A Motorized Nano-vehicle -- 7 Conclusion -- References -- On-Surface Translational Activity of Porphyrin Chromophore Molecules -- 1 Introduction -- 2 Molecular Design and Synthesis -- 3 X-ray Crystallography -- 4 Scanning Tunneling Microscopy of Prototype Molecules -- 5 Trajectory of NC5 During Nanocar Race II -- 6 Concluding Remarks -- References. 327 $aControlled Driving of a Single-Molecule Anthracene-Based Nanocar on a Metal Surface -- 1 Introduction -- 2 Solution Synthesis of Anthracene-Based Nanocars -- 3 Preparing of the Race Track -- 4 Cl-Substituted Anthracene-Based Nanocar -- 5 CH3-Substituted Anthracene-Based Nanocar -- 5.1 First Step: Getting off the Line (Lateral Manipulation) -- 5.2 An Insight: The Importance of the CO-Functionalized Tip -- 5.3 Second Step: Going Somewhere/Driving Mechanism -- 6 Conclusions -- References -- Azulene Based Nanocars -- 1 Introduction -- 2 Moving Azulene-Based Nanostructures on the Au(111) Surface -- 3 Modifying the Lateral Groups Connected to the Azulene Core -- 4 Influence of the Cyano Group -- 5 The Role of the Side Groups -- 6 Summary and Outlook -- References -- Towards a Molecular Mechanical Calculator -- 1 Introduction -- 2 Mechanical Calculator Molecular Design on a Stepped Surface -- 3 A Molecule Gears Train: Experimental on the Terrace of the Pb(111) Surface -- 4 Experimental Molecular Gearing Effect Across a Monoatomic Step Edge -- 5 Experimentations on the Carry Propagation -- 6 Conclusion -- References -- Atomistic Modelling of Energy Dissipation in Nanoscale Gears -- 1 Introduction -- 2 Simulation Methodology -- 3 Results -- 3.1 Diamond Solid-State Gear on Substrates -- 3.2 Graphene Nanodisk-Molecule Gear Interaction -- 4 Conclusions and Outlook -- References -- Molecular Networks and Surface Engineering for Single Molecule Studies: From Spatial Separation to Emergent Properties -- 1 Introduction -- 2 Host-guest Architectures on Surfaces -- 2.1 Nanoporous Networks -- 2.2 Host-guest Architectures Formed by TMA -- 3 Templates for Trapping and Studying Single Molecules -- 3.1 Porous Networks -- 3.2 Pre-patterned Surfaces -- 4 Self-Assembled Networks for Single Molecule Studies and Cooperative Behavior -- 5 Conclusion -- References:. 410 0$aAdvances in Atom and Single Molecule Machines 606 $aMolecular machinery 615 0$aMolecular machinery. 676 $a547.7 702 $aMoresco$b Francesca 702 $aJoachim$b C. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910624303203321 996 $aSingle Molecule Mechanics on a Surface$92967883 997 $aUNINA