LEADER 05220nam 2201453z- 450 001 9910619468303321 005 20231214132917.0 010 $a3-0365-4950-1 035 $a(CKB)5670000000391591 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/93182 035 $a(EXLCZ)995670000000391591 100 $a20202210d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFinite-Time Thermodynamics 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (368 p.) 311 $a3-0365-4949-8 330 $aThe theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is ?the cost of haste?. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples. 606 $aEconomics, finance, business & management$2bicssc 610 $amacroentropy 610 $amicroentropy 610 $aendoreversible engine 610 $areversible computing 610 $aLandauer's principle 610 $apiston motion optimization 610 $aendoreversible thermodynamics 610 $astirling engine 610 $airreversibility 610 $apower 610 $aefficiency 610 $aoptimization 610 $ageneralized radiative heat transfer law 610 $aoptimal motion path 610 $amaximum work output 610 $aelimination method 610 $afinite time thermodynamics 610 $athermodynamics 610 $aeconomics 610 $aoptimal processes 610 $aaveraged 610 $aheat transfer 610 $acyclic mode 610 $asimulation 610 $amodeling 610 $areconstruction 610 $anonequilibrium thermodynamics 610 $aentropy production 610 $acontact temperature 610 $aquantum thermodynamics 610 $amaximum power 610 $ashortcut to adiabaticity 610 $aquantum friction 610 $aOtto cycle 610 $aquantum engine 610 $aquantum refrigerator 610 $afinite-time thermodynamics 610 $asulfuric acid decomposition 610 $atubular plug-flow reactor 610 $aentropy generation rate 610 $aSO2 yield 610 $amulti-objective optimization 610 $aoptimal control 610 $athermodynamic cycles 610 $athermodynamic length 610 $ahydrogen atom 610 $anano-size engines 610 $aa-thermal cycle 610 $aheat engines 610 $acooling 610 $avery long timescales 610 $aslow time 610 $aideal gas law 610 $anew and modified variables 610 $aSilicon-Germanium alloys 610 $aminimum of thermal conductivity 610 $aefficiency of thermoelectric systems 610 $aminimal energy dissipation 610 $aradiative energy transfer 610 $aradiative entropy transfer 610 $atwo-stream grey atmosphere 610 $aenergy flux density 610 $aentropy flux density 610 $ageneralized winds 610 $aconservatively perturbed equilibrium 610 $aextreme value 610 $amomentary equilibrium 610 $ainformation geometry of thermodynamics 610 $athermodynamic curvature 610 $acritical phenomena 610 $abinary fluids 610 $avan der Waals equation 610 $aquantum heat engine 610 $acarnot cycle 610 $aotto cycle 610 $amultiobjective optimization 610 $aPareto front 610 $astability 610 $amaximum power regime 610 $aentropy behavior 610 $abiophysics 610 $abiochemistry 610 $adynamical systems 610 $adiversity 610 $acomplexity 610 $apath information 610 $acalorimetry 610 $aentropy flow 610 $abiological communities 610 $areacting systems 615 7$aEconomics, finance, business & management 700 $aBerry$b R. Stephen$4edt$0440306 702 $aSalamon$b Peter$4edt 702 $aAndresen$b Bjarne$4edt 702 $aBerry$b R. Stephen$4oth 702 $aSalamon$b Peter$4oth 702 $aAndresen$b Bjarne$4oth 906 $aBOOK 912 $a9910619468303321 996 $aFinite-Time Thermodynamics$93038946 997 $aUNINA