LEADER 04508nam 2201153z- 450 001 9910619463703321 005 20231214133035.0 010 $a3-0365-5375-4 035 $a(CKB)5670000000391637 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/93253 035 $a(EXLCZ)995670000000391637 100 $a20202210d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHydrogen Sulfide and Reactive Oxygen Species, Antioxidant Defense, Abiotic Stress Tolerance Mechanisms in Plants 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 electronic resource (248 p.) 311 $a3-0365-5376-2 330 $aHydrogen sulfide (H2S), which was previously considered to be toxic, is now regarded as a burgeoning endogenous gaseous transmitter. H2S plays a vital role in the mechanism of response/adaptation to adverse environmental conditions as well as crosstalk with other signaling molecules, including ROS, by affecting the corresponding gene expression and subsequent enzyme activities. Both H2S and ROS are potent signaling molecules that can provoke reversible and irreversible oxidative post-translational modifications on cysteine residues of proteins such as sulfenylation or persulfidation, affecting the redox status and function of the target proteins. The dynamic interplay between persulfidation and sulfenylation occurring on cysteine residues is of great importance in response to environmental changes.The present Special Issue of IJMS has the aim of providing the most current findings on the function of signaling molecules, including H2S and ROS, in higher plants, and it is open to different types of manuscripts, including original research papers, perspectives, or reviews where either ROS, H2S, or related molecules could be involved at the biochemical or physiological levels. 606 $aMathematics & science$2bicssc 606 $aBiology, life sciences$2bicssc 606 $aMolecular biology$2bicssc 610 $aantioxidant defense systems 610 $aCd stress 610 $ahydrogen sulfide 610 $amelatonin 610 $aoxidative stress 610 $atransportation and sequestration 610 $anitric oxide 610 $aabscisic acid 610 $aCa2+ 610 $ahydrogen peroxide 610 $aabiotic stresses 610 $asignal transmitters 610 $astomatal movement 610 $apersulfidation 610 $adrought stress 610 $anitrate reductase 610 $al-cysteine desulfhydrase 610 $achilling stress 610 $aindole-3-acetic acid 610 $asignaling pathway 610 $acalcium deficiency 610 $aendogenous H2S 610 $areactive oxygen species 610 $aERF2-bHLH2-CML5 module 610 $apostharvest storage quality 610 $atomato 610 $acysteine desulfhydrase 610 $aleaf senescence 610 $aARF 610 $aauxin 610 $acold stress 610 $acucumber 610 $aDREB 610 $amodule 610 $aresistance 610 $aroot growth 610 $aheavy metal 610 $asalt 610 $aDES1 610 $aABI4 610 $aprotein stability 610 $aBrassica rapa 610 $amercury 610 $aselenium 610 $abiotic stress 610 $aabiotic stress 610 $asalicylic acid 610 $ajasmonic acid 610 $aethylene 610 $aphytohormones 610 $aArabidopsis 610 $amanganese stress 610 $aL-cysteine desulfhydrase 610 $aantioxidant enzyme 610 $aAllium 610 $agarlic 610 $agas detector 610 $aion-selective microelectrode 610 $aisozymes 610 $aRBOHs 610 $asignaling networks 615 7$aMathematics & science 615 7$aBiology, life sciences 615 7$aMolecular biology 700 $aXie$b Yanjie$4edt$01320372 702 $aCorpas$b Francisco$4edt 702 $aLi$b Jisheng$4edt 702 $aXie$b Yanjie$4oth 702 $aCorpas$b Francisco$4oth 702 $aLi$b Jisheng$4oth 906 $aBOOK 912 $a9910619463703321 996 $aHydrogen Sulfide and Reactive Oxygen Species, Antioxidant Defense, Abiotic Stress Tolerance Mechanisms in Plants$93034202 997 $aUNINA