LEADER 04037nam 22007095 450 001 9910616395903321 005 20240222095239.0 010 $a3-031-10596-6 024 7 $a10.1007/978-3-031-10596-8 035 $a(MiAaPQ)EBC7100660 035 $a(Au-PeEL)EBL7100660 035 $a(CKB)24950006400041 035 $a(DE-He213)978-3-031-10596-8 035 $a(PPN)264954203 035 $a(EXLCZ)9924950006400041 100 $a20220926d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Combinatorial Optimization /$fby Ding-Zhu Du, Panos M. Pardalos, Xiaodong Hu, Weili Wu 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (407 pages) 225 1 $aSpringer Optimization and Its Applications,$x1931-6836 ;$v196 311 08$aPrint version: Du, Ding-Zhu Introduction to Combinatorial Optimization Cham : Springer International Publishing AG,c2022 9783031105944 320 $aIncludes bibliographical references and index. 327 $a1. Introduction.-2. Divide-and-Conquer -- 3. Dynamic Programming and Shortest Path -- 4. Greedy Algorithm and Spanning Tree -- 5. Incremental Method and Maximum Network Flow -- 6. Linear Programming -- 7. Primal-Dual Methods and Minimum Cost Flow -- 8. NP-hard Problems and Approximation Algorithms -- 9. Restriction and Steiner Tree -- 10. Greedy Approximation and Submodular Optimization -- 11. Relaxation and Rounding. 12. Nonsubmodular Optimization -- Bibliography. 330 $aIntroductory courses in combinatorial optimization are popular at the upper undergraduate/graduate levels in computer science, industrial engineering, and business management/OR, owed to its wide applications in these fields. There are several published textbooks that treat this course and the authors have used many of them in their own teaching experiences. This present text fills a gap and is organized with a stress on methodology and relevant content, providing a step-by-step approach for the student to become proficient in solving combinatorial optimization problems. Applications and problems are considered via recent technology developments including wireless communication, cloud computing, social networks, and machine learning, to name several, and the reader is led to the frontiers of combinatorial optimization. Each chapter presents common problems, such as minimum spanning tree, shortest path, maximum matching, network flow, set-cover, as well as key algorithms, such as greedy algorithm, dynamic programming, augmenting path, and divide-and-conquer. Historical notes, ample exercises in every chapter, strategically placed graphics, and an extensive bibliography are amongst the gems of this textbook. 410 0$aSpringer Optimization and Its Applications,$x1931-6836 ;$v196 606 $aMathematical optimization 606 $aComputer science 606 $aOperations research 606 $aManagement science 606 $aAlgorithms 606 $aOptimization 606 $aTheory of Computation 606 $aOperations Research, Management Science 606 $aAlgorithms 606 $aOptimització combinatòria$2thub 608 $aLlibres electrònics$2thub 615 0$aMathematical optimization. 615 0$aComputer science. 615 0$aOperations research. 615 0$aManagement science. 615 0$aAlgorithms. 615 14$aOptimization. 615 24$aTheory of Computation. 615 24$aOperations Research, Management Science . 615 24$aAlgorithms. 615 7$aOptimització combinatòria 676 $a519.64 676 $a519.64 700 $aDu$b Dingzhu$061540 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910616395903321 996 $aIntroduction to combinatorial optimization$93039159 997 $aUNINA