LEADER 03387nam 2200505 450 001 9910616368903321 005 20230226175117.0 010 $a981-19-5619-7 035 $a(MiAaPQ)EBC7102374 035 $a(Au-PeEL)EBL7102374 035 $a(CKB)24950570000041 035 $a(OCoLC)1347279790 035 $a(EXLCZ)9924950570000041 100 $a20230226d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSelf-powered energy harvesting systems for health supervising applications /$fAlbert Alvarez-Carulla, Jordi Colomer-Farrarons, and Pere Lluis Miribel Catala 210 1$aGateway East, Singapore :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (131 pages) 225 1 $aSpringerBriefs in Applied Sciences and Technology 311 08$aPrint version: Álvarez-Carulla, Albert Self-Powered Energy Harvesting Systems for Health Supervising Applications Singapore : Springer,c2022 9789811956188 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- References -- 2 Self-powered Nodes for Structural Health Monitoring Applications -- 2.1 Wireless Sensor Nodes for Aerospace Applications -- 2.2 Adaptative Self-powered Circuit for Structural Health Monitoring -- 2.2.1 Piezoelectric-Based Energy-Harvesting System -- 2.2.2 Maximum Power Point Tracking Algorithm -- 2.2.3 Analog Control Unit -- 2.2.4 Wireless Transmission of Strain -- 2.3 Energy-Aware Adaptative Supercapacitor Storage System -- 2.4 CMOS Integrated Circuit for Structural Health Monitoring -- 2.5 Conclusions -- References -- 3 Galvanic Cell-Based Self-powered Devices -- 3.1 Dual-Galvanic Cell-Based Self-powered Devices -- 3.1.1 The Paper-Based Test Strip -- 3.1.2 The Electronic Reader -- 3.2 Single-Galvanic Cell-Based Self-powered Devices -- 3.2.1 The Galvanic Cell -- 3.2.2 The Electronic Reader -- 3.2.3 Point-Of-Care Device Characterization -- 3.2.4 Results Summary -- 3.3 Conclusions -- References -- 4 Ubiquitous Self-powered Architectures -- 4.1 Exploiting the Transducer Role as a Sensor and Power Source Simultaneously -- 4.2 Ubiquitous Self-powered Architecture -- 4.3 Conclusions -- References -- 5 LoRa Autosensed Self-powered Monitoring for Smart Industry -- 5.1 Low-Power Communications -- 5.1.1 Long-Range Communications -- 5.1.2 Long-Range Wide-Area Network -- 5.2 Algorithm to Enable LPWAN on Critical Low-Power Scenarios -- 5.3 Scenario Test -- 5.4 Conclusions -- References -- 6 Conclusions and Future Work -- 6.1 Conclusions -- 6.2 Future Work. 410 0$aSpringerBriefs in Applied Sciences and Technology 606 $aRenewable energy sources 606 $aEnergy harvesting 606 $aTechnological innovations 615 0$aRenewable energy sources. 615 0$aEnergy harvesting. 615 0$aTechnological innovations. 676 $a621.042 700 $aAlvarez-Carulla$b Albert$01261562 702 $aMiribel-Catala$b Pere Lluis 702 $aColomer-Farrarons$b Jordi 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910616368903321 996 $aSelf-Powered Energy Harvesting Systems for Health Supervising Applications$92937939 997 $aUNINA