LEADER 07354nam 2200481 450 001 9910616360703321 005 20231110234621.0 010 $a981-19-5162-4 035 $a(MiAaPQ)EBC7102054 035 $a(Au-PeEL)EBL7102054 035 $a(CKB)24950429400041 035 $a(PPN)264954696 035 $a(EXLCZ)9924950429400041 100 $a20230226d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPlant fiber reinforced composites /$fYan Li, Qian Li 210 1$aSingapore :$cSpringer,$d[2022] 210 4$dİ2022 215 $a1 online resource (229 pages) 225 1 $aEngineering Materials 311 08$aPrint version: Li, Yan Plant Fiber Reinforced Composites Singapore : Springer,c2022 9789811951619 320 $aIncludes bibliographical references. 327 $aIntro -- Preface -- Brief Introduction -- Contents -- 1 Introduction -- References -- 2 Plant Fibers -- 2.1 Overview of Plant Fibers -- 2.2 Chemical Compositions -- 2.3 Microstructure -- 2.4 Mechanical Properties -- 2.4.1 Mechanical Model for Elementary Fibers -- 2.4.2 Mechanical Model for the Single Plant Technical Fiber -- References -- 3 Manufacture of Plant Fiber Reinforced Composites -- 3.1 Surface Treatment Methods of Plant Fibers -- 3.1.1 Physical Modification of Plant Fibers -- 3.1.2 Chemical Modification of Plant Fibers -- 3.2 Molding Processes of Plant Fiber Reinforced Composites -- 3.2.1 Hot-Press Process -- 3.2.2 Autoclave Process -- 3.2.3 Resin Transfer Molding Process -- 3.2.4 Other Molding Processes -- 3.3 Effects of Processing Parameters on the Mechanical Performances of Plant Fiber Reinforced Composites -- 3.3.1 Effects of Curing Pressure -- 3.3.2 Effects of Processing Temperature -- 3.3.3 Effects of Lumen Structure -- References -- 4 Interface in Plant Fiber Reinforced Composites -- 4.1 Hierarchical Interface Performances and Failure Behaviors of Plant Fiber Reinforced Composites -- 4.2 A Micromechanical Model of Hierarchical Interfaces of Plant Fiber Reinforced Composites -- 4.2.1 Double-Interface Model for Single Sisal Fiber Pull-Out -- 4.2.2 Stress Distribution and Double-Stage Interface Fracture Mechanisms During Single Sisal Fiber Pull-Out Process -- 4.3 An FE Model of Hierarchical Interfaces of Plant Fiber Reinforced Composites -- 4.3.1 Multiple-Interface Model for Single Sisal Fiber Pull-Out -- 4.3.2 Stresses Distributions and Multi-Stage Fracture Mechanisms of SFRCs with Multiple Interfaces -- 4.4 An FE Model of Multi-Layer Interlaminar Fracture Behaviors for Plant Fiber Reinforced Composites -- 4.4.1 Numerical Simulation of Multi-Layer Interlaminar Fracture Behaviors for Laminated SFRCs. 327 $a4.4.2 Stresses Distribution and Interface Failure Mechanism on Mode I Interlaminar Fracture of Laminated SFRCs with Multi-Layer Interface -- Appendix A: Coefficient of Single Fiber Pull-Out Model with Double Interfaces -- A.1 Stress Transfer in the Bonded Regions of Processes 1 and 2 -- A.2 Stress Transfer in the Debonded Regions of Processes 1 and 2 -- A.3 Coefficients of Processes 1 and 2 -- References -- 5 Mechanical Properties of Plant Fiber Reinforced Composites -- 5.1 Effects of Lumen Structure on the Mechanical Properties of Plant Fiber Reinforced Composites -- 5.2 Effects of Yarn Twist on the Mechanical Properties of Plant Fiber Reinforced Composites -- 5.2.1 Effects of the Twisting Processing Parameters on the Mechanical Properties of Plant Fibers and Yarns -- 5.2.2 Effects of the Twisting Processing Parameters on the Mechanical Properties of Plant Fiber Reinforced Composites -- 5.3 Mechanical Properties of Plant Fiber Reinforced Composites Modified by Nano Particals -- 5.3.1 Mechanical Properties of Plant Fiber Reinforced Composites Modified by Carbon Nanotubes -- 5.3.2 Interfacial Properties of Plant Fiber Reinforced Composites Modified by Crystalline Nano-Cellulose -- 5.4 Mechanical Properties of Hybrid Plant Fiber Reinforced Composites -- 5.4.1 Effect of Hybrid Ratio on Mechanical Properties of Hybrid Composites -- 5.4.2 Effect of Ply Sequence on Mechanical Properties of Hybrid Composites -- 5.4.3 Interlaminar Properties of Hybrid Composites -- References -- 6 Physical Properties of Plant Fiber Reinforced Composites -- 6.1 Acoustic Properties of Plant Fibers and Their Composites -- 6.1.1 Sound Absorption Properties of Plant Fiber Reinforced Composites -- 6.1.2 Acoustic Performance of Plant Fiber Reinforced Composite Sandwich Structure -- 6.2 Thermal Properties of Plant Fiber Reinforced Composites. 327 $a6.2.1 Thermal Conductivity of Plant Fiber Reinforced Composites -- 6.2.2 Theoretical Model of Thermal Conductivity of Plant Fiber Reinforced Composites -- 6.3 Dielectric Properties of Plant Fiber Reinforced Composites -- 6.4 Damping Properties of Plant Fiber Reinforced Composites -- 6.5 Flame Retardant Properties of Plant Fiber Reinforced Composites -- 6.5.1 Effect of Flame Retardant DOPO on Flame Retardancy of Plant Fiber Reinforced Composites -- 6.5.2 Effect of Flame-Retardant Modification on Mechanical Properties of Plant Fiber Reinforced Composites -- References -- 7 Durability Properties of Plant Fiber Reinforced Composites -- 7.1 Hydrothermal Aging of Plant Fiber Reinforced Composites -- 7.1.1 Water Absorption Behaviors of Plant Fiber Reinforced Composites -- 7.1.2 Mechanical Properties of Plant Fiber Reinforced Composites Under Hydrothermal Aging Conditions -- 7.1.3 Hydrothermal Aging Mechanisms of Plant Fiber Reinforced Composites -- 7.2 UV Aging of Plant Fiber Reinforced Composites -- 7.2.1 Effect of UV Aging on the Mechanical Properties of Plant Fiber Reinforced Composites -- 7.2.2 UV Aging Mechanisms of Plant Fiber Reinforced Composites -- 7.3 Mould Aging of Plant Fiber Reinforced Composites -- 7.3.1 Effect of Mould Aging on the Mechanical Properties of Plant Fiber Reinforced Composites -- 7.3.2 Exploration on Improving the Antibacterial Properties of Plant Fiber Reinforced Composites -- References -- 8 Life Cycle Assessment of Plant Fiber Reinforced Composites -- 8.1 Overview of LCA Methodologies -- 8.1.1 Definition and Technical Framework for LCA -- 8.1.2 Development of LCA Methodologies -- 8.2 LCA of Plant Fiber Reinforced Composites -- 8.2.1 Purpose and Scope -- 8.2.2 Functional Unit -- 8.2.3 Life Cycle Inventory Analysis -- 8.2.4 Life Cycle Impact Assessment -- 8.2.5 Results and Interpretation of Life Cycle Impact Assessment. 327 $a8.3 Comparison of LCA of Glass Fiber Reinforced Composites with Plant Fiber Reinforced Composites -- 8.3.1 Results and Comparisons of Characteristic Assessment -- 8.3.2 Results and Comparisons of Normalized and Weighted Assessment -- References -- 9 Applications of Plant Fiber Reinforced Composites -- References. 410 0$aEngineering Materials 606 $aFibrous composites 615 0$aFibrous composites. 676 $a910.5 700 $aLi$b Yan$0440717 702 $aLi$b Qian 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910616360703321 996 $aPlant fiber reinforced composites$93024148 997 $aUNINA