LEADER 06008nam 2201561z- 450 001 9910557446503321 005 20220111 035 $a(CKB)5400000000043275 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76797 035 $a(oapen)doab76797 035 $a(EXLCZ)995400000000043275 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCrystal Plasticity at Micro- and Nano-scale Dimensions 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (322 p.) 311 08$a3-0365-0874-0 311 08$a3-0365-0875-9 330 $aThe present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties. 606 $aTechnology: general issues$2bicssc 610 $aab initio calculations 610 $aactivation volume 610 $aalloys 610 $aanisotropic elasticity 610 $aanode 610 $aB2 phase 610 $aBCC Fe nanowires 610 $abi-crystal 610 $acohesive strength 610 $acompression 610 $aconversion reaction 610 $acopper single crystal 610 $acrack growth 610 $acracking 610 $acrystal plasticity simulations 610 $acrystal plasticity theory 610 $acrystal size dependencies 610 $acrystal strength 610 $acrystallographic slip 610 $acutting theory 610 $acyclic deformation 610 $ade-twinning 610 $adiscrete dislocation pile-up 610 $adislocation 610 $adislocation emission 610 $adislocation models 610 $adislocation plasticity 610 $adislocations 610 $aelastic properties 610 $afatigue 610 $afatigue crack initiation 610 $aFeCrAl 610 $afracture 610 $afracture mechanics 610 $afree surface 610 $ageometrically necessary dislocations 610 $agrain boundaries 610 $agrain boundary 610 $agrain growth 610 $aHall-Petch relation 610 $ahardness 610 $aHMX 610 $ahydrogen embrittlement 610 $ain situ electron microscopy 610 $aIN718 alloy 610 $aindentation creep 610 $aindentation size effect 610 $ainterfacial delamination 610 $aintermetallic compounds 610 $ainternal stress 610 $ainternal stresses 610 $airon 610 $akitagawa-takahashi diagram 610 $alattice distortive transformations 610 $alinear complexions 610 $alithium ion battery 610 $amagnesium 610 $amechanical property 610 $ametals and alloys 610 $amicro-crystals 610 $amicro-pillar 610 $amicromechanical testing 610 $amicropillar 610 $aminiaturised testing 610 $amolecular dynamics 610 $amolecular dynamics simulation 610 $amolecular dynamics simulations 610 $amultiaxial loading 610 $anano-crystals 610 $anano-indentation 610 $anano-polycrystals 610 $anano-wires 610 $ananocrystalline 610 $ananocutting 610 $ananoflower 610 $ananomaterials 610 $anucleation 610 $apersistent slip band 610 $aphase-field simulation 610 $apile-ups 610 $apillars 610 $arafting behavior 610 $arapid solidification 610 $asize effect 610 $astrain hardening 610 $astrain hardening behavior 610 $astrain rate 610 $astrain rate sensitivity 610 $astrength 610 $asurface hard coating 610 $asynchrotron radiation X-ray diffraction 610 $atemperature effect 610 $atheoretical model 610 $athermal stability 610 $atin sulfide 610 $atwin boundaries 610 $atwinning 610 $aultrafine-grained materials 610 $avoid formation 610 $awhiskers 615 7$aTechnology: general issues 700 $aArmstrong$b Ronald W$4edt$01304460 702 $aElban$b Wayne L$4edt 702 $aArmstrong$b Ronald W$4oth 702 $aElban$b Wayne L$4oth 906 $aBOOK 912 $a9910557446503321 996 $aCrystal Plasticity at Micro- and Nano-scale Dimensions$93030270 997 $aUNINA LEADER 03865nam 2200973z- 450 001 9910595080103321 005 20230220 035 $a(CKB)5680000000080723 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/92127 035 $a(oapen)doab97465 035 $a(EXLCZ)995680000000080723 100 $a20202209d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPhase Change Materials$eDesign and Applications 210 $aBasel$cMDPI - Multidisciplinary Digital Publishing Institute$d2022 215 $a1 online resource (190 p.) 311 08$a3-0365-5062-3 311 08$a3-0365-5061-5 330 $aThere is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled "Phase Change Materials: Design and Applications" is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences. 517 $aPhase Change Materials 606 $aPhysics$2bicssc 606 $aResearch and information: general$2bicssc 610 $aair 610 $aautomotive 610 $abattery cooling 610 $abuilding applications 610 $acold storage 610 $aconstruction materials 610 $acrystal growth 610 $acyclic voltammetry 610 $adegradation kinetics 610 $aDirect Electron Transfer (DET) 610 $adispersion 610 $aenergy efficiency 610 $aenergy storage 610 $aerythritol 610 $aexperimental study 610 $afinite element 610 $aFourier Transform ac Voltammetry (FTacV) 610 $alatent heat 610 $alatent heat storage 610 $alatent heat thermal energy storage 610 $alathrate hydrate 610 $aLPMO 610 $amacro-encapsulation 610 $amechanical properties 610 $amelting 610 $amicroencapsulated PCMs 610 $amicroencapsulation 610 $amini-channels 610 $amulticriteria decision 610 $an/a 610 $anucleating agent 610 $aPCM 610 $aphase change material 610 $aphase change materials 610 $aphase change materials (PCM) 610 $aphase-change material 610 $apolyurethane elastomers 610 $arectangular slab 610 $asodium nitrate 610 $asolidification 610 $asugar alcohol 610 $asupercooling 610 $atetrabutylammonium acrylate (TBAAc) 610 $athermal conductivity 610 $athermal energy storage 610 $athermal properties 610 $athermal stability 610 $athermal-mechanical stability 610 $aultrasonic vibration 610 $aviscosity 615 7$aPhysics 615 7$aResearch and information: general 700 $aKartsonakis$b Ioannis$4edt$01299438 702 $aKartsonakis$b Ioannis$4oth 906 $aBOOK 912 $a9910595080103321 996 $aPhase Change Materials$94427350 997 $aUNINA