LEADER 02671nam 2200637Ia 450 001 9910139801303321 005 20240313211506.0 010 $a1-68015-367-6 010 $a1-84755-919-0 035 $a(CKB)1000000000791391 035 $a(EBL)1185476 035 $a(OCoLC)506361092 035 $a(SSID)ssj0000379327 035 $a(PQKBManifestationID)12101340 035 $a(PQKBTitleCode)TC0000379327 035 $a(PQKBWorkID)10365636 035 $a(PQKB)10271910 035 $a(Au-PeEL)EBL1185476 035 $a(CaPaEBR)ebr10618783 035 $a(CaONFJC)MIL871739 035 $a(PPN)198467567 035 $a(MiAaPQ)EBC1185476 035 $a(MiAaPQ)EBC7424538 035 $a(Au-PeEL)EBL7424538 035 $a(EXLCZ)991000000000791391 100 $a20080206d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aElectronic waste management /$feditors, R.E. Hester and R.M. Harrison 205 $a1st ed. 210 $aCambridge, UK $cRSC Pub.$dc2009 215 $a1 online resource (280 p.) 225 0 $aIssues in environmental science and technology,$x1350-7583 ;$v27 300 $aDescription based upon print version of record. 311 $a0-85404-112-5 320 $aIncludes bibliographical references and index. 327 $a9780854041121_Electronic Waste Management_OFC; i_iv; v_vi; vii_xiii; xiv_xv; xvi_xvi; 001_039; 040_074; 075_090; 091_110; 111_160; 161_179; 180_211; 212_235; 236_257; 258_263 330 $aElectronic waste includes such items as TVs, computers, LCD and plasma displays, and mobile phones, as well as a wide range of household, medical and industrial equipment which are simply discarded as new technologies become available. Huge and growing quantities of waste are discarded every year and this waste contains toxic and carcinogenic compounds which can pose a risk to the environment. However, if handled correctly, electronic waste presents a valuable source of secondary raw materials. This book brings together a group of leading experts in the management of electrical and electronic 410 0$aIssues in Environmental Science and Technology 606 $aElectronic waste$xManagement 606 $aElectronic waste 615 0$aElectronic waste$xManagement. 615 0$aElectronic waste. 676 $a363.7288 701 $aHester$b R. E$g(Ronald E.)$0855792 701 $aHarrison$b Roy M.$f1948-$015997 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139801303321 996 $aElectronic waste management$92206269 997 $aUNINA LEADER 04428nam 2201057z- 450 001 9910595069403321 005 20220916 035 $a(CKB)5680000000080837 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/92151 035 $a(oapen)doab92151 035 $a(EXLCZ)995680000000080837 100 $a20202209d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProgress of Fiber-Reinforced Composites$eDesign and Applications 210 $aBasel$d2022 215 $a1 online resource (228 p.) 311 08$a3-0365-5182-4 311 08$a3-0365-5181-6 330 $aFiber-reinforced composite (FRC) materials are widely used in advanced structures and are often applied in order to replace traditional materials such as metal components, especially those used in corrosive environments. They have become essential materials for maintaining and strengthening existing infrastructure due to the fact that they combine low weight and density with high strength, corrosion resistance, and high durability, providing many benefits in performance and durability. Modified fiber-based composites exhibit better mechanical properties, impact resistance, wear resistance, and fire resistance. Therefore, the FRC materials have reached a significant level of applications ranging from aerospace, aviation, and automotive systems to industrial, civil engineering, military, biomedical, marine facilities, and renewable energy. In order to update the field of design and development of composites with the use of organic or inorganic fibers, a Special Issue entitled "Progress of Fiber-Reinforced Composites: Design and Applications" has been introduced. This reprint gathers and reviews the collection of twelve article contributions, with authors from Europe, Asia and America accepted for publication in the aforementioned Special Issue of Applied Sciences. 517 $aProgress of Fiber-Reinforced Composites 606 $aTechnology: general issues$2bicssc 610 $aaccelerated ageing method 610 $aanchor 610 $abanana fiber 610 $abasalt fiber-reinforced polymer (BFRP) 610 $abonded-bolted hybrid 610 $abraided composites 610 $abrittleness index 610 $aC/C composites 610 $acarbon fibers 610 $acarbonization 610 $acomposites 610 $acompression after impact 610 $acompression shear properties 610 $acompressive property 610 $acomputational fluid dynamics 610 $aconcrete edge breakout resistance 610 $acrashworthiness 610 $acyclic hygrothermal aging 610 $adamage propagation 610 $adurability 610 $aenergy absorption capacity 610 $afailure angle 610 $aFEM 610 $afiber-cement-treated subgrade soil 610 $afinite element analysis 610 $afinite element analysis (FEA) 610 $aGFRP composite structures 610 $ahigh strain rates 610 $ahigh temperature 610 $ahybrid structures 610 $ahygrothermal ageing 610 $aimpact response 610 $ajoining 610 $alignin 610 $amechanical properties 610 $amelt spinning 610 $ametal inserts 610 $ametallic/composite joints 610 $amicro-CT 610 $amulti-material design 610 $an/a 610 $anatural fiber 610 $aplasticity 610 $aprevailing torque 610 $aprogressive failure analysis (PFA) 610 $aRaman 610 $aresistance spot welding 610 $ashear behavior 610 $asignal attenuation 610 $aslip-critical connection 610 $astainless-steel cover plates 610 $asteel fiber 610 $asurface treatment 610 $athermoplastic composites 610 $athickness 610 $atriaxial test 610 $atubular composites 610 $aultimate flexural strength 610 $awireless communication 615 7$aTechnology: general issues 700 $aKartsonakis$b Ioannis$4edt$01299438 702 $aKartsonakis$b Ioannis$4oth 906 $aBOOK 912 $a9910595069403321 996 $aProgress of Fiber-Reinforced Composites$93039446 997 $aUNINA