LEADER 01471nam a2200301 i 4500 001 991001833359707536 005 20220905114152.0 008 121004s1772 it a 001 0 lat d 035 $ab1407798x-39ule_inst 040 $aDip.to Matematica e Fisica$beng 084 $aAMS 01A50 100 1 $aRiccati, Vincenzo$d<1707-1775>$0477494 245 10$aDe' principi della meccanica /$clettere di Vincenzo Riccati al P. Virgilio Cavina 260 $aIn Venezia :$bnella Stamperia Coleti,$c1772 300 $a111, [1] p., v fold. pl. :$bill. ;$c4° 500 $aSegn.: A-O4 500 $aImpronta: p-e- Sie- raon stdu (3) 1772 (R) 500 $aEx libris Mario Lombardo 650 04$aMechanics$xEarly works to 1800 700 1 $aCavina, Virgilio 856 41$uhttp://books.google.com/books/ucm?vid=UCM5325923898&printsec=frontcover$zVersione integrale disponibile su Google Books: 907 $a.b1407798x$b20-05-22$c04-10-12 912 $a991001833359707536 945 $aLE013 Fondo Lombardo 01A RIC11 (1772)$g1$i2013000219806$lle013$og$pE10.00$q-$rn$so$t1$u0$v0$w0$x0$y.i15525806$z24-07-13 962 $a000:000:URL:b1407798:005449:0:0:0:0:0:0$tMiniatura$vy$uhttp://siba-millennium.unisalento.it/screens/edant/parziali/PrincipiMeccanica/001.jpg$ehttp://siba-millennium.unisalento.it/screens/edant/parziali/PrincipiMeccanica/Miniatura.jpg 996 $aDe' principi della meccanica$9240769 997 $aUNISALENTO 998 $ale013$b04-10-12$cm$da$eo$flat$git$h0$i0 LEADER 05319nam 2201369z- 450 001 9910595066203321 005 20220916 035 $a(CKB)5680000000080871 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/92086 035 $a(oapen)doab92086 035 $a(EXLCZ)995680000000080871 100 $a20202209d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNew Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus 210 $aBasel$d2022 215 $a1 online resource (368 p.) 311 08$a3-0365-4906-4 311 08$a3-0365-4905-6 330 $aThis reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention. 606 $aMathematics and Science$2bicssc 606 $aResearch and information: general$2bicssc 610 $aAB-fractional operator 610 $aAdomian decomposition method 610 $aasymptotic stability 610 $aAtangana-Baleanu fractional derivative operator 610 $abasin of attraction 610 $abessel function 610 $abeta function 610 $aboundedness 610 $aCaputo derivative 610 $aCaputo fractional derivative 610 $aCaputo-Fabrizio derivative 610 $aCaputo-Fabrizio derivative 610 $aCaputo-Hadamard fractional derivative 610 $aCaputo-Hadamard fractional integral 610 $aCattaneo equation 610 $acomputational cost 610 $acomputational order of convergence 610 $aconvex 610 $acubic B-splines 610 $adelta function 610 $aefficiency index 610 $aElzaki transform 610 $aEuler's integral of gamma functions 610 $aexponential convex 610 $aextended cubic B-splines 610 $aextremal solutions 610 $aFeje?r-Hadamard inequality 610 $aFisher's equation 610 $afixed point theory 610 $aFornberg-Whitham equation 610 $aFox-Wright-function 610 $afractal dimensions 610 $afractional 610 $afractional calculus 610 $afractional div-curl systems 610 $afractional kinetic equation 610 $afractional transforms 610 $afractional vector operators 610 $afractional-order differential equations 610 $ageneralized fractional kinetic equation 610 $ageneralized hypergeometric series 610 $aGould-Hopper-Laguerre-Sheffer matrix polynomials 610 $aHadamard inequality 610 $aHalley's method 610 $aharmonically convex function 610 $aHelmholtz decomposition theorem 610 $aHermite-Hadamard-type inequalities 610 $aHilfer fractional derivative 610 $aHo?lder's inequality 610 $aHukuhara difference 610 $ahybrid Caputo-Hadamard fractional differential equation and inclusion 610 $ahybrid control 610 $ainequalities 610 $aMittag-Leffler kernel 610 $amodel calibration 610 $amonotone iterative method 610 $an/a 610 $aNeimark-Sacker bifurcation 610 $anew iterative transform method 610 $anon-singular function involving kernel fractional operator 610 $anonlinear models 610 $aoperational matrices 610 $aoperational methods 610 $aperiod-doubling bifurcation 610 $aprey-predator model 610 $aquantum 610 $aquasi-monomiality 610 $aRiemann zeta-function 610 $aRiemann-Liouville derivative 610 $asequences 610 $ashifted Vieta-Lucas polynomials 610 $asystem of Whitham-Broer-Kaup equations 610 $athermostat modeling 610 $atrigonometric cubic B-splines 610 $atyphoid fever disease 610 $aumbral calculus 610 $avaccination 610 $aweighted (k,s) fractional derivative 610 $aweighted (k,s) fractional integral operator 610 $aweighted generalized Laplace transform 610 $aYang transform 610 $a?-Caputo derivative 615 7$aMathematics and Science 615 7$aResearch and information: general 700 $aTassaddiq$b Asifa$4edt$01332985 702 $aYaseen$b Muhammad$4edt 702 $aTassaddiq$b Asifa$4oth 702 $aYaseen$b Muhammad$4oth 906 $aBOOK 912 $a9910595066203321 996 $aNew Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus$93041193 997 $aUNINA