LEADER 03731nam 22006855 450 001 9910595032603321 005 20251009105820.0 010 $a9789811961281$b(electronic bk.) 010 $z9789811961274 024 7 $a10.1007/978-981-19-6128-1 035 $a(MiAaPQ)EBC7098168 035 $a(Au-PeEL)EBL7098168 035 $a(CKB)24866045600041 035 $a(PPN)264955307 035 $a(DE-He213)978-981-19-6128-1 035 $a(OCoLC)1345579646 035 $a(EXLCZ)9924866045600041 100 $a20220916d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMetamaterials for Manipulation of Thermal Radiation and Photoluminescence in Near and Far Fields /$fby Yinhui Kan 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (131 pages) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 311 08$aPrint version: Kan, Yinhui Metamaterials for Manipulation of Thermal Radiation and Photoluminescence in near and Far Fields Singapore : Springer,c2022 9789811961274 327 $a1. Introduction -- 2. Theoretical and experimental methods -- 3. Design of broadband metamaterial absorbers in visible and infrared frequencies -- 4. Enhancement and modulation of near-field thermal radiation -- 5. Metasurfaces-enabled manipulation of spontaneous photon emission -- 6. On-chip control excitations of quantum emitters in hybrid nanocircuits -- 7. Summary and outlook -- Appendix : Characterizations of Hybrid QE-Coupled Metasurfaces. . 330 $aThis book provides a series of methods for flexibly and actively manipulating thermal emission and photoluminance by advanced nanostructures?metamaterials. Nanostructures in subwavelength scales can be designed to precisely modulate light-matter interactions and thereby tailoring both thermal radiations and photon emissions. This book explores approaches for designing different kinds of nanostructures, including multilayers, gratings, nanoridges, and waveguides, to improve the flexibility and functionality of micro/nanodevices. With the help of these subwavelength nanostructures, thermal radiation and photoluminescence have been fully manipulated in near and far fields regarding to the intensity, spectrum, polarization, and direction. The proposed methods together with designed metamaterials open new avenues for designing novel micro-/nanodevices or systems for promising applications like thermal energy harvesting, detecting, sensing, and on-chip quantum-optical networks. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 606 $aNanophotonics 606 $aPlasmonics 606 $aMetamaterials 606 $aNanotechnology 606 $aNear-field microscopy 606 $aNanophotonics and Plasmonics 606 $aMetamaterials 606 $aNanocavities 606 $aNanotechnology 606 $aNear -field Optics 615 0$aNanophotonics. 615 0$aPlasmonics. 615 0$aMetamaterials. 615 0$aNanotechnology. 615 0$aNear-field microscopy. 615 14$aNanophotonics and Plasmonics. 615 24$aMetamaterials. 615 24$aNanocavities. 615 24$aNanotechnology. 615 24$aNear -field Optics. 676 $a536.33 700 $aKan$b Yinhui$01258646 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910595032603321 996 $aMetamaterials for Manipulation of Thermal Radiation and Photoluminescence in near and Far Fields$92916716 997 $aUNINA