LEADER 04138nam 2200469 450 001 9910592978703321 005 20231110224619.0 010 $a9789811929922$b(electronic bk.) 010 $z9789811929915 035 $a(MiAaPQ)EBC7084535 035 $a(Au-PeEL)EBL7084535 035 $a(CKB)24819667900041 035 $a(PPN)264955285 035 $a(EXLCZ)9924819667900041 100 $a20230207d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFundamental studies of shock-driven hydrodynamic instabilities /$fYu Liang 210 1$aGateway East, Singapore :$cSpringer,$d[2022] 210 4$dİ2022 215 $a1 online resource (201 pages) 225 1 $aSpringer Theses 311 08$aPrint version: Liang, Yu Fundamental Studies of Shock-Driven Hydrodynamic Instabilities Singapore : Springer,c2022 9789811929915 320 $aIncludes bibliographical references and index. 327 $aIntro -- Supervisor's Foreword -- Abstract -- Parts of this paper have been published in the following journal articles -- Acknowledgements -- Contents -- Abbreviations -- Physical Constants at 1 atm Pressure and 293.15 K -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Research Background -- 1.2 Research Progress -- 1.2.1 Study of Shock-Driven Single-Mode Interface Evolution -- 1.2.2 Study of Shock-Driven Multi-mode Interface Evolution -- 1.2.3 Study of Shock-Driven Three-Dimensional Interface Evolution -- 1.2.4 Study of Rippled-Shock-Driven Unperturbed Interface Evolution -- 1.2.5 Study of Shock-Driven Multi-layer Interface Evolution -- 1.2.6 Study of Shock-Driven Multi-phase Interface Evolution -- 1.3 Research Contents -- References -- 2 Shock-Driven Multi-mode Interface Evolution -- 2.1 Shock-Driven Single-Mode Interface Evolution -- 2.1.1 Experimental Method -- 2.1.2 Results and Discussion -- 2.2 Shock-Driven Quasi-single-mode Interface Evolution -- 2.2.1 Experimental Method -- 2.2.2 Qualitative Analysis -- 2.2.3 Quantitative Analysis -- 2.2.4 Theoretical Analysis -- 2.3 Shock-Driven Multi-mode Interface Evolution -- 2.3.1 Experimental Method -- 2.3.2 Qualitative Analysis -- 2.3.3 Linear and Nonlinear Theories -- 2.3.4 The Mixing Width Growth -- 2.4 Shock-Driven Three-Dimensional Interface Evolution -- 2.4.1 Experimental Method -- 2.4.2 Initial 3DMS Interface Configuration -- 2.4.3 Experimental Observation -- 2.4.4 Linear and Nonlinear Amplitude Growths -- 2.5 Conclusions -- References -- 3 Shock-Driven Multi-layer Interface Evolution -- 3.1 Shock-Driven Heavy Gas Layer Evolution -- 3.1.1 Experimental Method -- 3.1.2 One-Dimensional Experimental Results and Analysis -- 3.1.3 Two-Dimensional Experimental Results and Analysis -- 3.2 Shock-Driven Light Gas Layer Evolution -- 3.2.1 Experimental Method. 327 $a3.2.2 One-Dimensional Experimental Results and Analysis -- 3.2.3 Two-Dimensional Experimental Results and Analysis -- 3.2.4 Comparison Between Light Gas Layer and Heavy Gas Layer -- 3.3 Shock-Driven Dual Layer Evolution -- 3.3.1 Linear Stability Analysis -- 3.3.2 Experimental Method -- 3.3.3 One-Dimensional Motions of Waves and Interfaces -- 3.3.4 Two-Dimensional Hydrodynamic Instabilities -- 3.4 Conclusions -- References -- 4 Shock-Driven Multi-phase Interface Evolution -- 4.1 Shock-Driven Multi-phase Droplet Interaction -- 4.1.1 Experimental Method -- 4.1.2 Qualitative Analysis -- 4.1.3 Droplet Deformation -- 4.1.4 Bubble Evolution -- 4.2 Conclusions -- References -- 5 Conclusions and Outlook -- 5.1 Conclusions -- 5.2 Innovations -- 5.3 Outlook -- References. 410 0$aSpringer Theses 606 $aHydrodynamics 606 $aInterfaces (Physical sciences)$xMathematics 615 0$aHydrodynamics. 615 0$aInterfaces (Physical sciences)$xMathematics. 676 $a532.5 700 $aLiang$b Yu$01257790 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910592978703321 996 $aFundamental Studies of Shock-Driven Hydrodynamic Instabilities$92914704 997 $aUNINA